期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Effect of Thermal Cycling under Load on Martensite Transformation and Two-way Shape Memory Effect in a TiNi Alloy 被引量:1
1
作者 Liming WANG, Yufeng ZHENG, Wei CAI, Xianglong MENG and Liancheng ZHAO School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期263-266,共4页
The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increa... The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increasing the number of cycles, while A(s) and A(f) temperature decrease during thermal cycling. The total strain at and permanent strain epsilon (p) increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations. 展开更多
关键词 TINI Effect of Thermal cycling under load on Martensite Transformation and Two-way Shape Memory Effect in a TiNi Alloy
下载PDF
Effects of loading waveforms on rock damage using particle simulation method 被引量:5
2
作者 XIA Ming GONG Feng-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1755-1765,共11页
The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at t... The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at the mesoscopic scale, such as loading frequency, stress amplitude, mean stress, confining pressure and loading sequence, are also investigated with sinusoidal waveform in detail. The related numerical results have demonstrated that: 1) the loading waveform has a certain effect on rock failure processes. The square waveform has the most damage within these waveforms, while the triangle waveform has less damage than sinusoidal waveform. In each cycle, the number of microscopic cracks increases in the loading stage, while it keeps nearly constant in the unloading stage. 2) The loading frequency, stress amplitude, mean stress, confining pressure and loading sequence have considerable effects on rock damage subjected to cyclic loading. The higher the loading frequency, stress amplitude and mean stress, the greater the damage the rock accumulated; in contrast, the lower the confining pressure, the greater the damage the rock has accumulated. 3) There is a threshold value of mean stress and stress amplitude, below which no further damage accumulated after the first few cycle loadings. 4) The high-to-low loading sequence has more damage than the low-to-high loading sequence, suggesting that the rock damage is loading-path dependent. 展开更多
关键词 rock damage failure process crack initiation and propagation loading waveform cycle loading particle simulation method
下载PDF
Performance of Concrete Subjected to Severe Multiple Actions of Composite Salts Solution under Wet-Dry Cycles and Flexural Loading in Lab 被引量:2
3
作者 陈燕娟 高建明 +1 位作者 TANG Luping SHEN Daman 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期830-837,共8页
Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modul... Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modulus of elasticity(Erd values) were monitored, as well as the key factor impacting on the chloride ingress when concrete subjected to multiple action regimes was identified by the method of Grey Relation Analysis(GRA). The changes in micro-structures and mineral products of interior concrete after different action regimes were investigated by means of X-ray diffraction(XRD), mercury intrusion technique(MIP), and scanning electron microscopy(SEM). The test results showed that the cyclic wet-dry accelerated the deterioration of OPC concrete more than the action of 35% flexural loading based on the results of Erd values and the GEA. The analyses from micro-structures could give certain explanations to the change in Erd values under different action regimes. 展开更多
关键词 concrete wet-dry cycles flexural loading composite salts solution grey relation analysis
下载PDF
Coupling Mechanism of Saturated Concrete Subjected to Simultaneous Fatigue Loading and Freeze-thaw Cycles 被引量:1
4
作者 QIAO Yunfeng SUN Wei +1 位作者 JIANG Jinyang PAN Dongfang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1121-1128,共8页
The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperat... The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperature strain and fatigue strain of concrete specimens were measured at the same time from one sample with stain analysis method and the relationship among these three kinds of strains was studied by fitting data to present coupling mechanism at macro level. The results showed that there was no interaction between fatigue strain and temperature strain and the coupling strain could be written by linear superposition of temperature strain and fatigue strain. 展开更多
关键词 coupling mechanism fatigue loading freeze-thaw cycles strain saturated concrete
下载PDF
Fatigue Reliability Analysis of Aircraft Turbine Disc under Random Loads
5
作者 张智胜 胡胜勇 +2 位作者 谢朝阳 郭中泽 李火生 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期319-322,共4页
Due to bad working conditions and complicated structure,kinds of complicated cycle loads work on turbine disc, and it's difficult to determine the stress distribution of their equivalent load.Based on the traditio... Due to bad working conditions and complicated structure,kinds of complicated cycle loads work on turbine disc, and it's difficult to determine the stress distribution of their equivalent load.Based on the traditional stress-strength interference model and conditional reliability,the reliability models of turbine disc without the stress distribution are established in this paper. In the range of fatigue limit, by improving fatigue life curve, the relationship between turbine disc's life probability distribution and material GH4133B's is got,and so is the relationship between life and stress.Then,on the basis of test data of smooth material test-piece from references,the fatigue life probability distribution of material testpiece is found out,and then the fatigue life probability distribution of turbine disc is confirmed. The fatigue life probability distribution of turbine disc is taken into reliability model and the reliability of turbine is analyzed disc under random loads. And this analysis result confirms the variation trend of engine's reliability. 展开更多
关键词 fatigue reliability conditional reliability loads cycle times-fault cycle times interference
下载PDF
Characteristic Surface Oxide Film Cracking Behavior of a Fe-Ni-Cr Alloy under In-phase and Out-of-phase Thermo-mechanical Fatigue
6
作者 何庆复 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期850-853,共4页
The surface oxide film cracking behavior of Fe-30Ni-20Cr alloy under in-phase and out-of-phase synchronizing thermal cycling with mechanical cycling was studied.Surface oxide film cracking along the grain boundary und... The surface oxide film cracking behavior of Fe-30Ni-20Cr alloy under in-phase and out-of-phase synchronizing thermal cycling with mechanical cycling was studied.Surface oxide film cracking along the grain boundary under in-phase overlapping was creep predominant fracture mechanisms.Strongly induced slip lines preceding were accompanied by the surface oxide film cracking under Out-of phase,and the shear cracking was dominant mode.Negative mean stress could counteract a part of the tensile component of alternative stress,so as to delay the cracking process under in-phase,but positive mean stress overlapping the tensile alternative stress could accelerate the cycling cracking process under out-of-phase. 展开更多
关键词 oxide film cracking in-phas out-of-phase cycling temperature cycling loading OVERLAPPING
下载PDF
A nonlinear rheological damage model of hard rock 被引量:11
7
作者 HU Bo YANG Sheng-qi XU Peng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1665-1677,共13页
By adopting cyclic increment loading and unloading method, time-independent and time-dependent strains can be separated. It is more reasonable to describe the reversible and the irreversible deformations of sample sep... By adopting cyclic increment loading and unloading method, time-independent and time-dependent strains can be separated. It is more reasonable to describe the reversible and the irreversible deformations of sample separately during creep process. A nonlinear elastic-visco-plastic rheological model is presented to characterize the time-based deformational behavior of hard rock. Specifically, a spring element is used to describe reversible instantaneous elastic deformation. A reversible nonlinear visco-elastic (RNVE) model is developed to characterize recoverable visco-elastic response. A combined model, which contains a fractional derivative dashpot in series with another Hook’s body, and a St. Venant body in parallel with them, is proposed to describe irreversible visco-plastic deformation. Furthermore, a three-stage damage equation based on strain energy is developed in the visco-plastic portion and then nonlinear elastic-visco-plastic rheological damage model is established to explain the trimodal creep response of hard rock. Finally, the proposed model is validated by a laboratory triaxial rheological experiment. Comparing with theoretical and experimental results, this rheological damage model characterizes well the reversible and irreversible deformations of the sample, especially the tertiary creep behavior. 展开更多
关键词 Hard rock multi-step loading and unloading cycles NONLINEAR DAMAGE rheological model
下载PDF
Two phenomena: Honji instability, and ringing of offshore structures 被引量:1
8
作者 J. Grue 《Theoretical & Applied Mechanics Letters》 CAS 2011年第6期1-6,共6页
Honji instability and ringing of offshore structrures are two different phenomena. Honji instability occurs at a circular cylinder in transverse periodic finite motion in a water tank. It is superposed on the streamin... Honji instability and ringing of offshore structrures are two different phenomena. Honji instability occurs at a circular cylinder in transverse periodic finite motion in a water tank. It is superposed on the streaming flow induced by the cylinder’s boundary layer. Its oscillation period is half of the period of the cylinder oscillation. Finite volume calculations of the filtered Navier-Stokes equations visualize the three-dimensional instability, where fluid particles transported by the circumferencial roll pairs exhibit a periodic mushroom-like pattern. Force is the same with and without the Honji instability. The large eddy simulation calculations for high Reynolds number support a drag coefficient in accordance with the Stokes-Wang solution below separation and conform with experimental measurements of the damping force on a harmonically oscillating cylinder. Ringing of offshore structures are vibrations which appear at natural frequencies and concern fatigue. It is generated by a higher harmonic force oscillating with frequency being 3-4 times the fundamental wave frequency. Together with a strong inertia load in phase with the incoming wave’s acceleration, a secondary load cycle appears in strong seas when the wave crest leaves the structure; this occurs about 1/4 wave period after the main force peak, it starts when the wave crest is about one cylinder radius behind the cylinder, lasts for about 15-20 percent of the wave period and has a magnitude up to 11 % of the peak-to-peak total force. It is a gravity effect and appears in strong irregular seas when kA > 0.18 and um/√gD > 0.4 (k wavenumber, A amplitude, um maximal wave induced velocity, g acceleration of gravity, D cylinder diameter). 展开更多
关键词 Honji instability Honji rolls drag coefficient RINGING secondary load cycle offshore structures
下载PDF
HEAT ENERGY DISSIPATION IN FATIGUE DAMAGE PROCESS
9
作者 TUNG Xiaoyan Northwestern Polytechnical University,Xi’an,ChinaWANG Dejun XU Hao Northeast University of Technology,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第5期373-378,共6页
Using the dissipated energy as an essential parameter,the energy dissipative structure in pro- cess of fatigue damage of materials has been established.Through thermodynamic analysis for irreversible energy dissipatio... Using the dissipated energy as an essential parameter,the energy dissipative structure in pro- cess of fatigue damage of materials has been established.Through thermodynamic analysis for irreversible energy dissipation in fatigue damage process,the heat dissipative variations in cyclic loading process as well as in a cycle have been systematically studied on the basis of low cycle fatigue tests and infrared measurement of self-heating thermography.Meanwhile,the cyclic hysteresis energy and efficient energy dissipation (stored energy) have been proposed during fatigue damage process. 展开更多
关键词 fatigue damage energy dissipation cycle loading process
下载PDF
Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell 被引量:2
10
作者 Tian TIAN Jianjun TANG +1 位作者 Wei GUO Mu PAN 《Frontiers in Energy》 SCIE CSCD 2017年第3期326-333,共8页
In this paper, a novel accelerated test method was proposed to analyze the durability of MEA, considering the actual operation of the fuel cell vehicle. The proposed method includes 7 working conditions: open circuit... In this paper, a novel accelerated test method was proposed to analyze the durability of MEA, considering the actual operation of the fuel cell vehicle. The proposed method includes 7 working conditions: open circuit voltage (OCV), idling, rated output, overload, idling-rated cycle, idling-overload cycle, and OCV-idling cycle. The experimental results indicate that the proposed method can effectively destroy the MEA in a short time (165 h). Moreover, the degradation mechanism of MEA was analyzed by measuring the polarization curve, CV, SEM and TEM. This paper may provide a new research direction for improving the durability of fuel cell. 展开更多
关键词 polymer electrolyte membrane fuel cell accelerated life-time test load cycling test DURABILITY
原文传递
Preliminary design of an SCO_(2) conversion system applied to the sodium cooled fast reactor 被引量:1
11
作者 Hongyi YANG Xiaoyan YANG +5 位作者 Jun YANG Quanbin ZHAO Xiaokun WANG Daotong CHONG Chanjuan TANG Chengyuan JIANG 《Frontiers in Energy》 SCIE CSCD 2021年第4期832-841,共10页
The supercritical carbon dioxide(SCO_(2))Brayton cycle has become an ideal power conversion system for sodium-cooled fast reactors(SFR)due to its high efficiency,compactness,and avoidance of sodiumwater reaction.In th... The supercritical carbon dioxide(SCO_(2))Brayton cycle has become an ideal power conversion system for sodium-cooled fast reactors(SFR)due to its high efficiency,compactness,and avoidance of sodiumwater reaction.In this paper,the 1200 MWe large pool SFR(CFR1200)is used as the heat source of the system,and the sodium circuit temperature and the heat load are the operating boundaries of the cycle system.The performance of different SCO_(2) Brayton cycle systems and changes in key equipment performance are compared.The study indicates that the inter-stage cooling and recompression cycle has the best match with the heat source characteristics of the SFR,and the cycle efficiency is the highest(40.7%).Then,based on the developed system transient analysis program(FR-Sdaso),a pool-type SFR power plant system analysis model based on the inter-stage cooling and recompression cycle is established.In addition,the matching between the inter-stage cooling recompression cycle and the SFR during the load cycle of the power plant is studied.The analysis shows that when the nuclear island adopts the flow-advanced operation strategy and the carbon dioxide flowrate in the SCO_(2) power conversion system is adjusted with the goal of maintaining the sodium-carbon dioxide heat exchanger sodium side outlet temperature unchanged,the inter-stage cooling recompression cycle can match the operation of the SFR very well. 展开更多
关键词 sodium-cooled fast reactor(SFR) supercritical carbon dioxide(SCO_(2)) brayton cycle load cycle
原文传递
CALCULATION METHODS ON CRACK RESISTANCE CAPACITY OF CONNECTION COMPOSED OF CSSEUHSC COLUMNS AND SEC BEAMS
12
作者 Changwang Yan 1,2 Ju Zhang 1 Jinqing Jia 2 ( 1 School of Mining and Technology, Inner Mongolia University of Technology, Hohhot 010051, China) ( 2 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China) 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第S1期85-89,共5页
In order to investigate the calculation methods on crack resistance capacity of connection composed of cross shaped steel encased ultra high strength concrete (CSSEUHSC) columns and steel encased concrete (SEC) beams ... In order to investigate the calculation methods on crack resistance capacity of connection composed of cross shaped steel encased ultra high strength concrete (CSSEUHSC) columns and steel encased concrete (SEC) beams under cycle loads, six interior connection specimens were tested in the laboratory. A discussion on the crack resistance capacity was presented. Calculation methods of crack resistance capacity were deduced based on the experimental case and calculation results were in good agreement with the experimental results. The research results indicated that parameters of connection composed of CSSEUHSC columns and SEC beams with better crack resistance performance may be referred for engineering application. 展开更多
关键词 seismic damage calculation methods CSSEUHSC column cycle loads
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部