Atmospheric CO_(2)concentrations are soaring due to the continued use of fossil fuels in energy production,an anthropogenic activity that is playing a leading role in global warming.Thus,research aimed at the capture ...Atmospheric CO_(2)concentrations are soaring due to the continued use of fossil fuels in energy production,an anthropogenic activity that is playing a leading role in global warming.Thus,research aimed at the capture and conversion of CO_(2)into value-added products,such as cyclic carbonates,is booming.While CO_(2)is an abundant,cheap,non-toxic,and readily accessible Cl feedstock,its thermodynamic stability necessitates the development of highly efficient catalysts that are able to promote chemical reactions under mild conditions.In this work,a novel mesoporous poly(ionic liquid)with dual active sites was synthesized through a facile method that involves co-polymerization,post-synthetic metalation,and supercritical CO_(2)drying.Due to a high density of nucleophilic and electrophilic sites,the as-prepared poly(ionic liquid),denoted as P2D-4BrBQA-Zn,offers excellent performance in a CO_(2)cycloaddition reaction using epichlorohydrin as the substrate(98.9%conversion and 96.9%selectivity).Moreover the reaction is carried out under mild,solvent-free,and additive-free conditions.Notably,P2D-4BrBQA-Zn also efficiently promotes the conversion of various other epoxide substrates into cyclic carbonates.Overall,the catalyst is found to have excellent substrate compatibility,stability,and recyclability.展开更多
Calculations of chemical structures and photofading of parabens (PHB—4 hydroxybenzoic acid), which are p-hydroxybenzoic acid alkyl esters were performed. These compounds are used as preservatives for the substances u...Calculations of chemical structures and photofading of parabens (PHB—4 hydroxybenzoic acid), which are p-hydroxybenzoic acid alkyl esters were performed. These compounds are used as preservatives for the substances used in cosmetics. The reactivity of these derivatives with an oxidant—singlet oxygen—have been tested with a theoretical method of frontier orbitals. All-valence molecular orbital methods, AM1 and PM3, have been used to calculate frontier electron density for higher occupied HOMO and lower unoccupied LUMO orbitals, which might be sensitive to an electrophilic (with singleton oxygen atom 1O2) or nucleophilic ( superoxide anion radical) attack at a particular atom in a molecule. Using AM1 and PM3, we calculated the reactivity , superdelocalisability and electron density distributions. The obtained superdelocalisability rates allow you to explain the fastness values in different chemical molecules. The structure of parabens (PHB) was optimized by MM+, DM, AM1 or PM3, to achieve constant energy values at a convergence criterion of 0.01 kcal/mol. The performed calculations indicate that the electrophilic oxidation reaction should take place in the aromatic ring in the 2-position to the hydroxyl residue of PHB, whereas the superoxide radical reaction occurs mainly on the alkyl residues of the ester group. The reaction may take place according to superoxide mechanism or 1,2-addition, where the higher superdelocalisability values SN are located on neighboring atoms in aromatic systems.展开更多
Electronic structure calculations have been carried out to study various closely related isomers with propane backbone which form part of our quantum chemical approach to inter and intra-molecular kinetics. The useful...Electronic structure calculations have been carried out to study various closely related isomers with propane backbone which form part of our quantum chemical approach to inter and intra-molecular kinetics. The usefulness of UCA-FUKUI developed by Jesús Sánchez-Márquez to facilitate the theoretical study of chemical reactivity is exploited. All isomers are identified as local minima with single-point calculations on DFT/B3LYP/6-31G(d,p). The increasing order of stability by groups of isomers are group I;propn-2-ol, propan-1-ol, group II;propanone, propanal, group III;Ethylmethanoate, Propanoic acid, Methylethanoate, group IV;N,N-dimethylformamide, propanimino, and propanamide. The trend in reactivity of the various groups of isomers and specific points of nucleophilic and electrophilic attacks are presented. We noticed that most of the properties of these isomers taught at the fundamental levels are proven true theoretically.展开更多
基金financial support from the National Natural Science Foundation of China(22078274,21903066)。
文摘Atmospheric CO_(2)concentrations are soaring due to the continued use of fossil fuels in energy production,an anthropogenic activity that is playing a leading role in global warming.Thus,research aimed at the capture and conversion of CO_(2)into value-added products,such as cyclic carbonates,is booming.While CO_(2)is an abundant,cheap,non-toxic,and readily accessible Cl feedstock,its thermodynamic stability necessitates the development of highly efficient catalysts that are able to promote chemical reactions under mild conditions.In this work,a novel mesoporous poly(ionic liquid)with dual active sites was synthesized through a facile method that involves co-polymerization,post-synthetic metalation,and supercritical CO_(2)drying.Due to a high density of nucleophilic and electrophilic sites,the as-prepared poly(ionic liquid),denoted as P2D-4BrBQA-Zn,offers excellent performance in a CO_(2)cycloaddition reaction using epichlorohydrin as the substrate(98.9%conversion and 96.9%selectivity).Moreover the reaction is carried out under mild,solvent-free,and additive-free conditions.Notably,P2D-4BrBQA-Zn also efficiently promotes the conversion of various other epoxide substrates into cyclic carbonates.Overall,the catalyst is found to have excellent substrate compatibility,stability,and recyclability.
基金supported by the National Natural Science Foundation of China(21403097)the Fundamental Research Funds for the Central Universities,China(lzujbky-2016-45)~~
文摘Calculations of chemical structures and photofading of parabens (PHB—4 hydroxybenzoic acid), which are p-hydroxybenzoic acid alkyl esters were performed. These compounds are used as preservatives for the substances used in cosmetics. The reactivity of these derivatives with an oxidant—singlet oxygen—have been tested with a theoretical method of frontier orbitals. All-valence molecular orbital methods, AM1 and PM3, have been used to calculate frontier electron density for higher occupied HOMO and lower unoccupied LUMO orbitals, which might be sensitive to an electrophilic (with singleton oxygen atom 1O2) or nucleophilic ( superoxide anion radical) attack at a particular atom in a molecule. Using AM1 and PM3, we calculated the reactivity , superdelocalisability and electron density distributions. The obtained superdelocalisability rates allow you to explain the fastness values in different chemical molecules. The structure of parabens (PHB) was optimized by MM+, DM, AM1 or PM3, to achieve constant energy values at a convergence criterion of 0.01 kcal/mol. The performed calculations indicate that the electrophilic oxidation reaction should take place in the aromatic ring in the 2-position to the hydroxyl residue of PHB, whereas the superoxide radical reaction occurs mainly on the alkyl residues of the ester group. The reaction may take place according to superoxide mechanism or 1,2-addition, where the higher superdelocalisability values SN are located on neighboring atoms in aromatic systems.
文摘Electronic structure calculations have been carried out to study various closely related isomers with propane backbone which form part of our quantum chemical approach to inter and intra-molecular kinetics. The usefulness of UCA-FUKUI developed by Jesús Sánchez-Márquez to facilitate the theoretical study of chemical reactivity is exploited. All isomers are identified as local minima with single-point calculations on DFT/B3LYP/6-31G(d,p). The increasing order of stability by groups of isomers are group I;propn-2-ol, propan-1-ol, group II;propanone, propanal, group III;Ethylmethanoate, Propanoic acid, Methylethanoate, group IV;N,N-dimethylformamide, propanimino, and propanamide. The trend in reactivity of the various groups of isomers and specific points of nucleophilic and electrophilic attacks are presented. We noticed that most of the properties of these isomers taught at the fundamental levels are proven true theoretically.