A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconductin...A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconducting solenoids (Nb-Ti/Cu) and six superconducting sextupoles (Nb-Ti/Cu). Different from the conventional supercon- ducting ECR magnetic structure, the SEC17AL Ⅱ includes three superconducting solenoid coils' that are located inside the superconducting sextupoles. The SECRAL Ⅱ can significantly reduce the interaction forces between the sextupole and the solenoids, and the magnets can also be more compact in size. For this multi-component SECRAL Ⅱ generating its self field of -8 T and being often exposed to the high self field, the mechanical analysis has become the main issue to keep their stress at 〈200 MPa on coils. The analytical and experimental results in mechanics are presented in the SECRAL Ⅱ structure. To improve the accuracy and efficiency of analysis, according to the composite rule of micromechanics, the equivalent uniform windings are used to simulate the epoxy-impregnated Nb-Ti/Cu coils. In addition, using low temperature strain gauges and a wireless fast strain acquisition system, a fundamental experiment on the based on our analysis, the stresses and deformations optimized. strains developments of a sextupole is reported. Finally, for its assembly of each SECRAL Ⅱ coil will be further展开更多
A practical 2.45-GHz microwave-driven Cs-free H^- source was improved based on the experimental H^- source at Peking University(PKU). Several structural improvements were implemented to meet the practical requiremen...A practical 2.45-GHz microwave-driven Cs-free H^- source was improved based on the experimental H^- source at Peking University(PKU). Several structural improvements were implemented to meet the practical requirements of Xi'an Proton Application Facility(XiPaf). Firstly, the plasma chamber size was optimized to enhance the plasma intensity and stability. Secondly, the filter magnetic field and electron deflecting magnetic field were enhanced to reduce co-extracted electrons. Thirdly, a new two-electrode extraction system with farther electrode gap and enhanced water cooling ability to diminish spark and sputter during beam extraction was applied. At last, the direct H^- current measuring method was adopted by the arrangement of a new pair of bending magnets before Faraday cup(FC) to remove residual electrons. With these improvements, electron cyclotron resonance(ECR) magnetic field optimization experiments and operation parameter variation experiments were carried out on the H^- ion source and a maximum 8.5-mA pure H^- beam was extracted at 50 kV with the time structure of 100 Hz/0.3 ms. The root-mean-square(RMS) emittance of the beam is 0.25 Π·mm·mrad. This improved H^- source and extraction system were maintenance-free for more than 200 hours in operation.展开更多
An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of ...An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of fast ions in the HL-2A/3 tokamak.The E//B NPA contains three main units,i.e.the stripping unit,the analyzing unit and the detection unit.A gas stripping chamber was adopted as the stripping unit.The results of the simulations and beam tests for the stripping chamber are presented.Parallel electric and magnetic fields provided by a NdFeB permanent magnet and two parallel electric plates were designed and constructed for the analyzing unit.The calibration of the magnetic and electric fields was performed using a 50 kV electron cyclotron resonance ion source(ECRIS)platform.The detection unit consists of 32lutetium-yttrium oxyorthosilicate(LYSO)detector modules arranged in two rows.The response functions ofα,hydrogen ions(H^(+),H_(2)^(+)and H_(3)^(+))andγfor a detector module were measured with^(241)Am,^(137)Cs and^(152)Eu sources together with the 50 kV ECRIS platform.The overall results indicate that the designed E//B NPA device is capable of measuring the intensity of neutral hydrogen and deuteron atoms with energy higher than 20 keV.展开更多
Optical emission spectroscopy(OES), as a simple in situ method without disturbing the plasma, has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR) ion sour...Optical emission spectroscopy(OES), as a simple in situ method without disturbing the plasma, has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR) ion source at Peking University(PKU). A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance(ECR) ion source [Patent Number: ZL 201110026605.4] and experiments were carried out recently. The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas. Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results. What is more, the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen. Details will be presented in this paper.展开更多
A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydro...A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydrogen ion beam at 50 k V with a duty factor of 10%. The root-mean-square(RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work,the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10^(-4) to 1×10^(-3) Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11302225the China Postdoctoral Science Foundation under Grant Nos 2014M560820 and 2015T81071
文摘A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconducting solenoids (Nb-Ti/Cu) and six superconducting sextupoles (Nb-Ti/Cu). Different from the conventional supercon- ducting ECR magnetic structure, the SEC17AL Ⅱ includes three superconducting solenoid coils' that are located inside the superconducting sextupoles. The SECRAL Ⅱ can significantly reduce the interaction forces between the sextupole and the solenoids, and the magnets can also be more compact in size. For this multi-component SECRAL Ⅱ generating its self field of -8 T and being often exposed to the high self field, the mechanical analysis has become the main issue to keep their stress at 〈200 MPa on coils. The analytical and experimental results in mechanics are presented in the SECRAL Ⅱ structure. To improve the accuracy and efficiency of analysis, according to the composite rule of micromechanics, the equivalent uniform windings are used to simulate the epoxy-impregnated Nb-Ti/Cu coils. In addition, using low temperature strain gauges and a wireless fast strain acquisition system, a fundamental experiment on the based on our analysis, the stresses and deformations optimized. strains developments of a sextupole is reported. Finally, for its assembly of each SECRAL Ⅱ coil will be further
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775007 and 11575013)
文摘A practical 2.45-GHz microwave-driven Cs-free H^- source was improved based on the experimental H^- source at Peking University(PKU). Several structural improvements were implemented to meet the practical requirements of Xi'an Proton Application Facility(XiPaf). Firstly, the plasma chamber size was optimized to enhance the plasma intensity and stability. Secondly, the filter magnetic field and electron deflecting magnetic field were enhanced to reduce co-extracted electrons. Thirdly, a new two-electrode extraction system with farther electrode gap and enhanced water cooling ability to diminish spark and sputter during beam extraction was applied. At last, the direct H^- current measuring method was adopted by the arrangement of a new pair of bending magnets before Faraday cup(FC) to remove residual electrons. With these improvements, electron cyclotron resonance(ECR) magnetic field optimization experiments and operation parameter variation experiments were carried out on the H^- ion source and a maximum 8.5-mA pure H^- beam was extracted at 50 kV with the time structure of 100 Hz/0.3 ms. The root-mean-square(RMS) emittance of the beam is 0.25 Π·mm·mrad. This improved H^- source and extraction system were maintenance-free for more than 200 hours in operation.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2018YFE0310200)National Natural Science Foundation of China(Nos.11705242,11805138 and 12175156)the Fundamental Research Funds for the Central Universities in China(Nos.YJ201820 and YJ201954)。
文摘An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of fast ions in the HL-2A/3 tokamak.The E//B NPA contains three main units,i.e.the stripping unit,the analyzing unit and the detection unit.A gas stripping chamber was adopted as the stripping unit.The results of the simulations and beam tests for the stripping chamber are presented.Parallel electric and magnetic fields provided by a NdFeB permanent magnet and two parallel electric plates were designed and constructed for the analyzing unit.The calibration of the magnetic and electric fields was performed using a 50 kV electron cyclotron resonance ion source(ECRIS)platform.The detection unit consists of 32lutetium-yttrium oxyorthosilicate(LYSO)detector modules arranged in two rows.The response functions ofα,hydrogen ions(H^(+),H_(2)^(+)and H_(3)^(+))andγfor a detector module were measured with^(241)Am,^(137)Cs and^(152)Eu sources together with the 50 kV ECRIS platform.The overall results indicate that the designed E//B NPA device is capable of measuring the intensity of neutral hydrogen and deuteron atoms with energy higher than 20 keV.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175009 and 11575013)
文摘Optical emission spectroscopy(OES), as a simple in situ method without disturbing the plasma, has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR) ion source at Peking University(PKU). A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance(ECR) ion source [Patent Number: ZL 201110026605.4] and experiments were carried out recently. The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas. Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results. What is more, the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen. Details will be presented in this paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.11775007,and 11575013)The support from State Key Laboratory of Nuclear Physics and Technology,Peking University is appreciated
文摘A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydrogen ion beam at 50 k V with a duty factor of 10%. The root-mean-square(RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work,the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10^(-4) to 1×10^(-3) Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.