It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development ...It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR.展开更多
A chromium layer about 100 μm thickness was plated on the 38CrMoAl cylinder liner and the chromium layer was mcro quilting milled by using quilting grinding machine. The tribological properties and wear comparison te...A chromium layer about 100 μm thickness was plated on the 38CrMoAl cylinder liner and the chromium layer was mcro quilting milled by using quilting grinding machine. The tribological properties and wear comparison test were studied. The friction coefficient of the cylinder liner plated chromic layer and micro quilting milled is 15%-30% lower than the ordinary cylinder liner. The pits generated by micro quilting milling on the chromic layer surface had good effect of accommodating the abrasive grains and storaging lubricants, which improved the effect of the friction pair significantly. The single-cylinder machine run-in tests revealed that the cylinder liner with plated chromic layer and micro quilting milling had good wear durability, and was different wear mechanisms to ordinary cylinder liner.展开更多
Currently the extruded effect,roughness to the lubricant shear thinning,temperature changes and other factors or some combination of a single factor mainly considered in the lubrication study of piston ring-cylinder.I...Currently the extruded effect,roughness to the lubricant shear thinning,temperature changes and other factors or some combination of a single factor mainly considered in the lubrication study of piston ring-cylinder.In the study of the energy equation,the oil viscosity-temperature properties,adsorption layer characteristics are usually not considered.So the theoretical research is different from the actual situation of engineering.The lubrication of piston ring-cylinder liner system in internal combustion(IC) engines is studied here based on the theory of thermal flow.An unsteady and compressible hydrodynamic lubrication model with an equivalent viscosity based on shear and extruded flow factor is derived by employing the viscosity-temperature relationship,meanwhile,characteristics such as lubricating oil’s density varying with pressure and temperature,thickness of adsorbent layer and oil film’s geometry are also considered in this model.While setting up the energy equation,the effect of lubricating oil’s volume expansion and viscous dissipation on temperature,the heat conduction along oil film’s thickness direction are considered.Finite difference equation is formed by using a first-order difference scheme in time scale and second-order difference scheme in space scale.A common diesel engine is introduced as an instance to predict the distribution of the minimum oil film thickness in the piston ring-cylinder liner system.The results of simulation calculation show that the minimum oil film thickness will decrease especially around the top dead center when the oil’s volume expansion,viscous dissipation and heat conduction are considered,which implies that:it is essential to take the thermal flow idea into account during investigating piston ring-cylinder liner system’s lubrication.A more complete piston ring-cylinder liner lubrication theory was established according to thermal fluids from the perspective of research.It is more helpful to guide the practical application of engineering to improve the accuracy of forecasting the minimum film thickness.On the other hand,distribution of the minimum oil film thickness shows a nonlinear property if the thickness of piston rings and cylinder liner adsorbent layer are involved in the analysis.It may be feasible to increase the minimum oil film thickness by varying surface roughness and material properties of piston rings and cylinder liner.展开更多
New Mg2Si based alloy were prepared by mechanical alloying. Sintering temperature was from 825 to 865K, which indicated that few Mg2Si were produced at lower temperature while MgO were produced at higher temperature. ...New Mg2Si based alloy were prepared by mechanical alloying. Sintering temperature was from 825 to 865K, which indicated that few Mg2Si were produced at lower temperature while MgO were produced at higher temperature. Microstructure image showed that at sintering temperature of 855K, Mg2Si were mostly synthesized with the reaction of purity magnesia powder and silicon powder. Hardness and wear tests proved that the new synthetic silicon magnesium alloy had higher hardness and good wear resistance. Under the same testing conditions, it is found that the hardness of the new material is 420.50, and pure magnesium is only 41.65.In the same experiments it is also found that under the same pressure, pure magnesium alloys than silicon wearing capacity of pure magnesium is 2 times as high that of Mg2Si based alloy. It shows that Mg2Si based alloy is the ideal material for the wear parts of car engine cylinder liner because of its small density, stable dimension, high hardness and wear-resisting.展开更多
In this study,a machine vision method is proposed to characterize 3D roughness of the textured surface on cylinder liner processed by plateau honing.The least absolute value(L∞)regression robust algorithm and Levenbe...In this study,a machine vision method is proposed to characterize 3D roughness of the textured surface on cylinder liner processed by plateau honing.The least absolute value(L∞)regression robust algorithm and Levenberg-Marquardt(LM)algorithm are employed to reconstruct image reference plane.On this basis,a single-hidden layer feedforward neural network(SLFNN)based on the extreme learning machine(ELM)is employed to model the relationship between high frequency information and 3D roughness.The characteristic parameters of Abbott-Firestone curve and 3D roughness measured by a confocal microscope are used to construct ELM-SLFNN prediction model for 3D roughness.The results indicate that the proposed method can effectively characterize 3D roughness of the textured surface of cylinder liner.展开更多
The effects of ultra-dispersed diamond (UDD) on the friction force, wear, and temperature of tri-bological pairs have been investigated. The experimental tests were carried out on a modified piston ring-cylinder liner...The effects of ultra-dispersed diamond (UDD) on the friction force, wear, and temperature of tri-bological pairs have been investigated. The experimental tests were carried out on a modified piston ring-cylinder liner bench tester with different particle mass fractions of 0, 0.02%, and 0.10%. The results show that compared with a pure fluid, the mixture of the fluid and UDD not only reduces the friction and wear, but also reduces the bulk temperature of the specimen. The mechanism by which the UDD lubricant improves the tribological properties has some relationship with surface topography, because it can increase the bearing capability of surfaces.展开更多
以内燃机典型摩擦副缸套-活塞系统为研究对象,设计和搭建内燃机缸套-活塞系统状态监测试验台。针对传统最大熵方法分析润滑油中磨粒监测数据存在的缺点,提出改进的分数矩最大熵方法(Fractional Moment Maximum Entropy Method, FM-MEM)...以内燃机典型摩擦副缸套-活塞系统为研究对象,设计和搭建内燃机缸套-活塞系统状态监测试验台。针对传统最大熵方法分析润滑油中磨粒监测数据存在的缺点,提出改进的分数矩最大熵方法(Fractional Moment Maximum Entropy Method, FM-MEM),并结合食肉植物优化算法(Carnivorous Plant Algorithm, CPA)对关键参数进行寻优求解。对润滑油中磨粒监测数据进行阈值划分,实现内燃机健康状态评估,然后将理论与试验相结合,以在线磨粒监测为主,从润滑油磨粒、理化指标以及表面形貌3个方面对内燃机缸套-活塞系统的运行状态进行监测,分析低速工况下缸套-活塞系统各个时间段的磨损健康状态及磨粒含量变化趋势,通过内燃机整机的在线磨粒监测试验,证明该方法可实现对内燃机缸套-活塞系统的实时状态监测。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51422507)Hubei Provincial Natural Science Foundation of China(Grant No.2015CFB372)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.2015IVA010)Tribology Science Fund of State Key Laboratory of Tribology of China(Grant No.SKLTKF14B03)
文摘It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR.
基金Funded by the National Natural Science Foundation of China(No.51275489)the Postdoctoral Science Foundation of China(No.2011M500545)the Youth Science and Technology Foundation of Shanxi Province(No.2008021004)
文摘A chromium layer about 100 μm thickness was plated on the 38CrMoAl cylinder liner and the chromium layer was mcro quilting milled by using quilting grinding machine. The tribological properties and wear comparison test were studied. The friction coefficient of the cylinder liner plated chromic layer and micro quilting milled is 15%-30% lower than the ordinary cylinder liner. The pits generated by micro quilting milling on the chromic layer surface had good effect of accommodating the abrasive grains and storaging lubricants, which improved the effect of the friction pair significantly. The single-cylinder machine run-in tests revealed that the cylinder liner with plated chromic layer and micro quilting milling had good wear durability, and was different wear mechanisms to ordinary cylinder liner.
基金supported by National Natural Science Foundation of China (Grant No. 50975192)
文摘Currently the extruded effect,roughness to the lubricant shear thinning,temperature changes and other factors or some combination of a single factor mainly considered in the lubrication study of piston ring-cylinder.In the study of the energy equation,the oil viscosity-temperature properties,adsorption layer characteristics are usually not considered.So the theoretical research is different from the actual situation of engineering.The lubrication of piston ring-cylinder liner system in internal combustion(IC) engines is studied here based on the theory of thermal flow.An unsteady and compressible hydrodynamic lubrication model with an equivalent viscosity based on shear and extruded flow factor is derived by employing the viscosity-temperature relationship,meanwhile,characteristics such as lubricating oil’s density varying with pressure and temperature,thickness of adsorbent layer and oil film’s geometry are also considered in this model.While setting up the energy equation,the effect of lubricating oil’s volume expansion and viscous dissipation on temperature,the heat conduction along oil film’s thickness direction are considered.Finite difference equation is formed by using a first-order difference scheme in time scale and second-order difference scheme in space scale.A common diesel engine is introduced as an instance to predict the distribution of the minimum oil film thickness in the piston ring-cylinder liner system.The results of simulation calculation show that the minimum oil film thickness will decrease especially around the top dead center when the oil’s volume expansion,viscous dissipation and heat conduction are considered,which implies that:it is essential to take the thermal flow idea into account during investigating piston ring-cylinder liner system’s lubrication.A more complete piston ring-cylinder liner lubrication theory was established according to thermal fluids from the perspective of research.It is more helpful to guide the practical application of engineering to improve the accuracy of forecasting the minimum film thickness.On the other hand,distribution of the minimum oil film thickness shows a nonlinear property if the thickness of piston rings and cylinder liner adsorbent layer are involved in the analysis.It may be feasible to increase the minimum oil film thickness by varying surface roughness and material properties of piston rings and cylinder liner.
基金Funded by the " 973 " Program of China (No. 2007CB613502)
文摘New Mg2Si based alloy were prepared by mechanical alloying. Sintering temperature was from 825 to 865K, which indicated that few Mg2Si were produced at lower temperature while MgO were produced at higher temperature. Microstructure image showed that at sintering temperature of 855K, Mg2Si were mostly synthesized with the reaction of purity magnesia powder and silicon powder. Hardness and wear tests proved that the new synthetic silicon magnesium alloy had higher hardness and good wear resistance. Under the same testing conditions, it is found that the hardness of the new material is 420.50, and pure magnesium is only 41.65.In the same experiments it is also found that under the same pressure, pure magnesium alloys than silicon wearing capacity of pure magnesium is 2 times as high that of Mg2Si based alloy. It shows that Mg2Si based alloy is the ideal material for the wear parts of car engine cylinder liner because of its small density, stable dimension, high hardness and wear-resisting.
基金Supported by National Natural Science Foundation of China(Grant No.52075438)Key Research and Development Program of Shaanxi Province of China(Grant No.2024GX-YBXM-268)Open Project of State Key Laboratory for Manufacturing Systems Engineering of China(Grant No.sklms2020010).
文摘In this study,a machine vision method is proposed to characterize 3D roughness of the textured surface on cylinder liner processed by plateau honing.The least absolute value(L∞)regression robust algorithm and Levenberg-Marquardt(LM)algorithm are employed to reconstruct image reference plane.On this basis,a single-hidden layer feedforward neural network(SLFNN)based on the extreme learning machine(ELM)is employed to model the relationship between high frequency information and 3D roughness.The characteristic parameters of Abbott-Firestone curve and 3D roughness measured by a confocal microscope are used to construct ELM-SLFNN prediction model for 3D roughness.The results indicate that the proposed method can effectively characterize 3D roughness of the textured surface of cylinder liner.
基金Supported by the National Natural Science Foundation of China (No. 50275046)
文摘The effects of ultra-dispersed diamond (UDD) on the friction force, wear, and temperature of tri-bological pairs have been investigated. The experimental tests were carried out on a modified piston ring-cylinder liner bench tester with different particle mass fractions of 0, 0.02%, and 0.10%. The results show that compared with a pure fluid, the mixture of the fluid and UDD not only reduces the friction and wear, but also reduces the bulk temperature of the specimen. The mechanism by which the UDD lubricant improves the tribological properties has some relationship with surface topography, because it can increase the bearing capability of surfaces.
文摘以内燃机典型摩擦副缸套-活塞系统为研究对象,设计和搭建内燃机缸套-活塞系统状态监测试验台。针对传统最大熵方法分析润滑油中磨粒监测数据存在的缺点,提出改进的分数矩最大熵方法(Fractional Moment Maximum Entropy Method, FM-MEM),并结合食肉植物优化算法(Carnivorous Plant Algorithm, CPA)对关键参数进行寻优求解。对润滑油中磨粒监测数据进行阈值划分,实现内燃机健康状态评估,然后将理论与试验相结合,以在线磨粒监测为主,从润滑油磨粒、理化指标以及表面形貌3个方面对内燃机缸套-活塞系统的运行状态进行监测,分析低速工况下缸套-活塞系统各个时间段的磨损健康状态及磨粒含量变化趋势,通过内燃机整机的在线磨粒监测试验,证明该方法可实现对内燃机缸套-活塞系统的实时状态监测。