The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor...The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor design is required to resolve the idle LBO issue.The authors detailed a practical and efficient solu⁃tion,which not only solved the idle LBO issue but also defined the aero-thermal design for high-FAR combustor.The design will usher in a new era of aero combustor.展开更多
Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system s...Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.展开更多
In this paper, 2-D computational analyses were conducted for unsteady high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes, i.e. 8.21×104〈Re〈1.54...In this paper, 2-D computational analyses were conducted for unsteady high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes, i.e. 8.21×104〈Re〈1.54×106. The calculations were performed by means of solving the 2-D Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a k-ε turbulence model. The calculated results, produced flow structure drag and lift coefficients, as well as Strouhal numbers. The findings were in good agreement with previous published data, which also supplied us with a good understanding of the flow across cylinders of different high Reynolds numbers. Meanwhile, an effective measure was presented to control the lift force on a cylinder, which points the way to decrease the vortex induced vibration of marine structure in future.展开更多
A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 ×10^4 to 1.0 ×^ 10^5. The axes of the strip and cylinder are parallel. The control parameters...A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 ×10^4 to 1.0 ×^ 10^5. The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.展开更多
In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrast...In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT- Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy.展开更多
A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was ...A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was measured by Doppler pins systems.The soft-recovered samples were characterized by optical and electron backscatter diffraction microscopy,and the effects of microstructures like grain boundaries,and crystal orientation on spall behavior were investigated.The results indicated that the critical stress of deformation twinning in cylindrical copper increased.The nucleation sites of spallation damage were determined by the joint influence of the grain orientation(Taylor factor)and the angle between grain boundaries and radial impact-stress direction.Voids were prone to nucleating at the grain boundaries perpendicular to the radial impact-stress direction.Nevertheless,the number of voids nucleated at boundaries was relatively different from the results obtained from the plate impact experiment and plate sweeping detonation experiment,which is a result of the curvature that existed in the cylindrical copper and the obliquity of the impact-stress direction during sweeping detonation loading.展开更多
Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics i...Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI(fluid-structure interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.展开更多
A Lagrangian-Eulerian hybrid scheme to solve unsteady N-S equation in two-dimensional incompressible fluid at high Reynolds numbers is presented in this paper. A random walk is imposed to simulate the viscous diffusio...A Lagrangian-Eulerian hybrid scheme to solve unsteady N-S equation in two-dimensional incompressible fluid at high Reynolds numbers is presented in this paper. A random walk is imposed to simulate the viscous diffusion, the vortex-in-cell method is used to obtain the convection velocity, and nascent vortices are created on a cylinder to satisfy the zero-slip condition. The impulsively started flow around a circular cylinder and the separation induced by a pair of incident vortices symmetrically approaching a circular cylinder have been successfully simulated by the hybrid scheme. The impulsively started flow from rest has been computed at Reynolds numbers 3000 and 9500. Comparisons are made with those results of finite-difference method, vortex method and flow visualization. Agreement is good. The particular attention has been paid to the evolutions of flow pattern. A topological analysis has been proposed in the region of the near wake. The bulge, isolated secondary vortex, a pair of secondary vortices, ' forewake phenomenon and other patterns are simulated numerically. The separation induced by a pair of incident vortices approaching a circular cylinder has been investigated by using the same scheme. The rebounding phenomenon of the incident vortex is observed and is attributed to the effect of the secondary vortex. In particular, we have found that a tertiary vortex can be formed near the surface; this phenomenon has been verified by flow visualization reported recently.展开更多
Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well wit...Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well with the results obtained by the analytical model from literatures. The velocity of the projectile decays rapidly during the penetration,which is about 90% losing in 80D penetration depth. Pressure distributions are also discussed and the results show that the largest pressure appears on the tip of the cone and the lowest pressure occurs inside the cavity and causes vapor generation. For inside the cavity,there is always a supplement of air from outside before the splash closed,after that,the cavity is mainly filled with vapor.展开更多
With tank special purpose lubricating oil,100N,200N and 800N loading force and different loading times,spray-formed high-silicon aluminium alloy and military superpower engine steel cylinder sleeve materials were used...With tank special purpose lubricating oil,100N,200N and 800N loading force and different loading times,spray-formed high-silicon aluminium alloy and military superpower engine steel cylinder sleeve materials were used for comparative friction test and friction pair comparision test under simulated engine work condition.The results showed that,compared with steel cylinder sleeve materials,high-silicon aluminium alloy showed more excellent wearing resistance.The friction mechanism analysis of high-silicon aluminium alloy indicated that high-hardness particles in soft parent metal had determinative function,including wearing resistance and supporting ability when wearing happened.Dents on soft parent metal surface produced by friction could store oil and were helpful for lubrication.The friction trace analysis showed that,high-hardness particles in high-silicon aluminium alloy could produce friction trace on 42MnCr52 steel surface,which proved friction function of high-hardness particles in high-silicon aluminium alloy.展开更多
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and...The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.展开更多
Abstract A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 10^4 based on the initial translation speed and diameter of the...Abstract A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 10^4 based on the initial translation speed and diameter of the vortex ring. We have investigated the evolution of vortical structures and identified three typical evolution phases. When the primary vortex closely approaches to the cylinder, a secondary vortex is generated and its segment parts move inward to the primary vortex ring. Then two large-scale loop-like vortices are formed to evolve in opposite directions. Thirdly, the two loop-like vortices collide with each other to form complicated small-scale vortical structures. Moreover, a series of hair-pin vortices are generated due to the stretching and deformation of the tertiary vortex. The trajectories of vortical structures and the relevant evolution speeds are analyzed. The total kinetic energy and enstrophy are investigated to reveal their properties relevant to the three evolution phases.展开更多
A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's...A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's function method. Then, using Watson transformation and high frequency asymptotic approximate technique to the exact soluton, a UTD soultion is obtained. The radiation field excitedby a monopole is expressed in terms of the compound Fock' S functions (CFF), which reduce to the geomertrical optics result in the deep lit region and the creeping waves in the shadow region.展开更多
文摘The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor design is required to resolve the idle LBO issue.The authors detailed a practical and efficient solu⁃tion,which not only solved the idle LBO issue but also defined the aero-thermal design for high-FAR combustor.The design will usher in a new era of aero combustor.
基金Supported by National Natural Science Foundation of China(Grant No.51605417)Key Project of Hebei Provincial Natural Science Foundation,China(Grant No.E2016203264)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)
文摘Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.
基金Foundation item: Supported by Supported by the National Natural Science Foundation of China (Grant No. 51009070).
文摘In this paper, 2-D computational analyses were conducted for unsteady high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes, i.e. 8.21×104〈Re〈1.54×106. The calculations were performed by means of solving the 2-D Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a k-ε turbulence model. The calculated results, produced flow structure drag and lift coefficients, as well as Strouhal numbers. The findings were in good agreement with previous published data, which also supplied us with a good understanding of the flow across cylinders of different high Reynolds numbers. Meanwhile, an effective measure was presented to control the lift force on a cylinder, which points the way to decrease the vortex induced vibration of marine structure in future.
基金the National Natural Science Foundation of China(10172087 and 10472124).
文摘A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 ×10^4 to 1.0 ×^ 10^5. The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.
基金supported by the National Natural Science Foundation of China(Grant No.61304197)the Scientific and Technological Talents of Chongqing,China(Grant No.cstc2014kjrc-qnrc30002)+2 种基金the Key Project of Application and Development of Chongqing,China(Grant No.cstc2014yykf B40001)the Natural Science Funds of Chongqing,China(Grant No.cstc2014jcyj A60003)the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-26)
文摘In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT- Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy.
基金Projects(51871243,51574290)supported by the National Natural Science Foundation of ChinaProject(2019JJ40381)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology,China。
文摘A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was measured by Doppler pins systems.The soft-recovered samples were characterized by optical and electron backscatter diffraction microscopy,and the effects of microstructures like grain boundaries,and crystal orientation on spall behavior were investigated.The results indicated that the critical stress of deformation twinning in cylindrical copper increased.The nucleation sites of spallation damage were determined by the joint influence of the grain orientation(Taylor factor)and the angle between grain boundaries and radial impact-stress direction.Voids were prone to nucleating at the grain boundaries perpendicular to the radial impact-stress direction.Nevertheless,the number of voids nucleated at boundaries was relatively different from the results obtained from the plate impact experiment and plate sweeping detonation experiment,which is a result of the curvature that existed in the cylindrical copper and the obliquity of the impact-stress direction during sweeping detonation loading.
基金supported by the International Cooperation on Technology Development Program of the Korea Institute for Advancement of Technology ( KIAT),Republic of Korea ( N0000902)
文摘Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI(fluid-structure interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.
文摘A Lagrangian-Eulerian hybrid scheme to solve unsteady N-S equation in two-dimensional incompressible fluid at high Reynolds numbers is presented in this paper. A random walk is imposed to simulate the viscous diffusion, the vortex-in-cell method is used to obtain the convection velocity, and nascent vortices are created on a cylinder to satisfy the zero-slip condition. The impulsively started flow around a circular cylinder and the separation induced by a pair of incident vortices symmetrically approaching a circular cylinder have been successfully simulated by the hybrid scheme. The impulsively started flow from rest has been computed at Reynolds numbers 3000 and 9500. Comparisons are made with those results of finite-difference method, vortex method and flow visualization. Agreement is good. The particular attention has been paid to the evolutions of flow pattern. A topological analysis has been proposed in the region of the near wake. The bulge, isolated secondary vortex, a pair of secondary vortices, ' forewake phenomenon and other patterns are simulated numerically. The separation induced by a pair of incident vortices approaching a circular cylinder has been investigated by using the same scheme. The rebounding phenomenon of the incident vortex is observed and is attributed to the effect of the secondary vortex. In particular, we have found that a tertiary vortex can be formed near the surface; this phenomenon has been verified by flow visualization reported recently.
基金Sponsored by the Special Fund Project for Technology Innovation Talent of Harbin(Grant No.2013RFLXJ007)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201159)
文摘Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well with the results obtained by the analytical model from literatures. The velocity of the projectile decays rapidly during the penetration,which is about 90% losing in 80D penetration depth. Pressure distributions are also discussed and the results show that the largest pressure appears on the tip of the cone and the lowest pressure occurs inside the cavity and causes vapor generation. For inside the cavity,there is always a supplement of air from outside before the splash closed,after that,the cavity is mainly filled with vapor.
文摘With tank special purpose lubricating oil,100N,200N and 800N loading force and different loading times,spray-formed high-silicon aluminium alloy and military superpower engine steel cylinder sleeve materials were used for comparative friction test and friction pair comparision test under simulated engine work condition.The results showed that,compared with steel cylinder sleeve materials,high-silicon aluminium alloy showed more excellent wearing resistance.The friction mechanism analysis of high-silicon aluminium alloy indicated that high-hardness particles in soft parent metal had determinative function,including wearing resistance and supporting ability when wearing happened.Dents on soft parent metal surface produced by friction could store oil and were helpful for lubrication.The friction trace analysis showed that,high-hardness particles in high-silicon aluminium alloy could produce friction trace on 42MnCr52 steel surface,which proved friction function of high-hardness particles in high-silicon aluminium alloy.
基金supported by the Fundamental Research Funds for the Central Universities and NPRP 08-691-2-289 grant from Qatar National Research Fund (QNRF)
文摘The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.
基金supported by the National Natural Science Foundation of China (11132010 and 11072236)the 111 Project (B07033)
文摘Abstract A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 10^4 based on the initial translation speed and diameter of the vortex ring. We have investigated the evolution of vortical structures and identified three typical evolution phases. When the primary vortex closely approaches to the cylinder, a secondary vortex is generated and its segment parts move inward to the primary vortex ring. Then two large-scale loop-like vortices are formed to evolve in opposite directions. Thirdly, the two loop-like vortices collide with each other to form complicated small-scale vortical structures. Moreover, a series of hair-pin vortices are generated due to the stretching and deformation of the tertiary vortex. The trajectories of vortical structures and the relevant evolution speeds are analyzed. The total kinetic energy and enstrophy are investigated to reveal their properties relevant to the three evolution phases.
文摘A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's function method. Then, using Watson transformation and high frequency asymptotic approximate technique to the exact soluton, a UTD soultion is obtained. The radiation field excitedby a monopole is expressed in terms of the compound Fock' S functions (CFF), which reduce to the geomertrical optics result in the deep lit region and the creeping waves in the shadow region.