期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Axial Clearance on the Flow Structure around a Rotating Disk Enclosed in a Cylindrical Casing
1
作者 Takashi Watanabe Hiroyuki Furukawa +1 位作者 Shohei Fujisawa Soma Endo 《Journal of Flow Control, Measurement & Visualization》 2016年第1期1-12,共12页
Numerical study is performed to investigate the swirling flow around a rotating disk in a cylindrical casing. The disk is supported by a thin driving shaft and it is settled at the center of the casing. The flow devel... Numerical study is performed to investigate the swirling flow around a rotating disk in a cylindrical casing. The disk is supported by a thin driving shaft and it is settled at the center of the casing. The flow develops in the radial clearance between the disk tip and the side wall of the casing as well as in the axial clearance between the disk surfaces and the stationary circular end walls of the casing. Keeping the geometry of the casing and the size of the radial clearance constant, we compared the flows developing in the fields with small, medium and large axial clearances at the Reynolds number from 6000 to 30,000. When the rotation rate of the disk is small, steady Taylor vortices appear in the radial clearance. As the flow is accelerated, several tens of small vortices emerge around the disk tip. The axial position of these small vortices is near the end wall or the axial midplane of the casing. When the small vortices appear on one side of the end walls, the flow is not permanent but transitory, and a polygonal flow with larger several vortices appears. With further increase of the rotation rate, spiral structures emerge. The Reynolds number for the onset of the spiral structures is much smaller than that for the onset of the spiral rolls in rotor-stator disk flows with no radial clearance. The spiral structures in the present study are formed by the disturbances that are driven by a centrifugal instability in the radial clearance and they are penetrated radially inward along the circular end walls of the casing. 展开更多
关键词 Rotating Disk cylindrical casing Bead-Like Flow Polygonal Flow
下载PDF
Effect of the end cap on the fragment velocity distribution of a cylindrical cased charge 被引量:4
2
作者 Wei Liao Jian-wei Jiang +3 位作者 Jian-bing Men Shu-you Wang Mei Li Han Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期1052-1061,共10页
The prediction of the fragment velocity distribution of a cylindrical cased charge with end caps is one of the key issues to assess the damage efficiency of the warhead. However, limited work has been conducted to pre... The prediction of the fragment velocity distribution of a cylindrical cased charge with end caps is one of the key issues to assess the damage efficiency of the warhead. However, limited work has been conducted to predict the fragment velocity distributions along the axis of cylindrical cased charges with end caps. This paper presents a study of the velocity distribution of fragments caused by the explosion of a cylindrical cased charge with end caps. The fragment velocity distribution and the end cap velocity were determined by an X-ray radiography method, and the axial fragment distribution was determined by witness plates. It was found that the velocities of fragments, especially near the edge, were increased when the end caps were added, and the position of maximum velocity is closer to the non-detonation end. The fragment velocities were increased, and the fragment projection range was decreased with the increase of the thickness of the end cap. A formula for fragment velocity distributions of a cylindrical cased charge with end caps, which is based on Huang’s formula, was proposed by the theoretical analysis and data fitting and validated experimentally. The results indicate that the proposed formula is accurate in predicting the fragment velocity distribution along the axis of a cylindrical cased charge with end caps detonated at one end. 展开更多
关键词 cylindrical cased explosive Fragments velocity End cap X-ray radiography Gurney formula
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部