To reduce the stitching error of circularity measurement of small cylindrical workpieces(Diameter less than 3 mm)by the segmenting-stitching method,arc contour extraction is analyzed in this paper.The coordinates of c...To reduce the stitching error of circularity measurement of small cylindrical workpieces(Diameter less than 3 mm)by the segmenting-stitching method,arc contour extraction is analyzed in this paper.The coordinates of cross-sectional circle of a small cylindrical part are segmented into several equal arcs to be obtained by a two-dimensional coordinate measuring machine.The circularity contour of the small cylindrical part can be formed by stitching a series of arc contours which are calculated by the obtained arc coordinate data.Due to the different measuring pressure angles of different measuring positions,the accuracy of obtained arc coordinate points is different.The bigger the pressure angle is,the accurate the obtained arc coordinate data are.The experiments show that the accuracy of two ends of the arc data is not as good as the central part.Therefore,the two ends of the obtained arc data are appropriately to be cut off,namely,only the central part of the arc data are extracted to be used for the stitching.As a result,the mean value of the matching coefficient is enhanced by 12%,the deviation between the overlap part of the neighbouring arc contour is reduced by 26%,and the average curvature of the arc contours is improved with the extraction method.Thus,the accuracy of the stitched circularity contour can be improved by this extraction procedure in the segmenting-stitching method for the circularity measurement of the small cylindrical parts.展开更多
In this study, a three-dimensional model based on RANS, slender-body theory and Newton-Euler dynamics is established to study the number concentration, one of the most important fluidization characteristics of cylindr...In this study, a three-dimensional model based on RANS, slender-body theory and Newton-Euler dynamics is established to study the number concentration, one of the most important fluidization characteristics of cylindrical particles. Also, the effects of interaction between cylindrical particles are taken into account by introducing the rigid collision dynamics. To validate the model, the fluidization experiments of cylindrical particles in a cold-state fluidized bed are carried out. The number concentration characteristics of cylindrical particles are obtained from computational fluid dynamics (CFD) simulation. It is found that cylindrical particles arriving at the exit of the riser the earliest come from the near-wall regions, the horizontal transfer of so many cylindrical particles from the radial centre regions to the near-wall regions is evident. Meanwhile, there is no distinct relationship between the number concentration and inlet wind velocity.展开更多
The sedimentations of two cylindrical particles in three different initial relative po- sitions are numerically simulated using the lattice Boltzmann method.The movement characteristics and particle interactions durin...The sedimentations of two cylindrical particles in three different initial relative po- sitions are numerically simulated using the lattice Boltzmann method.The movement characteristics and particle interactions during their sedimentation are presented and discussed in detail.The results show that,(i)if the two particles are released parallel but separated horizontally,they push away each other,rotate inwards and separate horizontally as they fall;(ii)if the two particles are released par- allel but separated vertically,the sedimentation behavior can be classified into three stages:trailing, tumbling and separating;(iii)if the two particles are released perpendicular but separated vertically, the sedimentation behavior can be characterized as:trailing and rotating,touching and sliding.In order to validate our simulation,experiments were also conducted and the results agree well with the numerical ones.展开更多
The cylindrical part of sheet metal based on hot-granule medium-pressure forming (HGMF) technology was investigated.The stress functions of the free deformation zone and the fracture instability theory were combined t...The cylindrical part of sheet metal based on hot-granule medium-pressure forming (HGMF) technology was investigated.The stress functions of the free deformation zone and the fracture instability theory were combined to establish the analytical expression of the critical pressure of punch. The results show that the active friction between the granule medium and the sheet metal, as well as the non-uniform internal pressure presented by the solid granule medium, can obviously improve the forming performance of the sheet metal. The critical pressure of punch increases with the increment of the friction coefficient between the granule medium and sheet metal, as well as the plastic strain ratio, whereas it decreases with the increase of the material-hardening exponent. Furthermore, the impact on the critical pressure from high to low order is the plastic strain ratio, the friction coefficient,and material-hardening exponent. The deep-drawing experiment with HGMF technology on AZ31B magnesium alloy sheet verified the instability theory.Key words: hot-granule展开更多
Based on the momentum and constitutive equations, the modified Orr_Sommerfeld equation describing the flow stability in a cylindrical particle two_phase flow was derived.For a cylindrical particle two_phase boundary l...Based on the momentum and constitutive equations, the modified Orr_Sommerfeld equation describing the flow stability in a cylindrical particle two_phase flow was derived.For a cylindrical particle two_phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect_ratio are, the more obvious the suppression effect is.展开更多
The orientation distribution function of cylindrical particle suspensions was deduced and numerically simulated, and an application was taken in a wedge-shaped flow field. The relationship between the orientation dist...The orientation distribution function of cylindrical particle suspensions was deduced and numerically simulated, and an application was taken in a wedge-shaped flow field. The relationship between the orientation distribution function and particle orientation angles was obtained. The results show that comparing with the most probable angle distribution which comes to being in short time, the distribution of the steady state doesn't vary much. in range; the main difference is the anti-clockwise rotation in the right and upper field, that is, particles rotate more at the points where the velocity gradients are larger. The most probable orientations are close to the direction of local streamlines. In the direction of streamlines, with poleradius decreasing, the most probable angles increase, but the angles between their orientations and the local streamlines decrease.展开更多
With the help of the method of separation of variables and the Debye-Hüchel approximation, the Poisson-Boltzmann equation that describes the distribution of the potential in the electrical double layer of a cylin...With the help of the method of separation of variables and the Debye-Hüchel approximation, the Poisson-Boltzmann equation that describes the distribution of the potential in the electrical double layer of a cylindrical particle with a limited length has been firstly solved under a very low potential condition. Then with the help of the functional analysis theory this equation has been further analytically solved under general potential conditions and consequently, the corresponding surface charge densities have been obtained. Both the potential and the surface charge densities cointide with those results obtained from the Debye-Hüchel approximation when the very low potential of zeψ〈〈kT is introduced.展开更多
In order t o evaluate inertial effect on sheet deformation in the simulation of stamping pr ocesses by dynamic explicit FEM, an analytic model is established for analyzing cylindrical cup drawing process. The main fa...In order t o evaluate inertial effect on sheet deformation in the simulation of stamping pr ocesses by dynamic explicit FEM, an analytic model is established for analyzing cylindrical cup drawing process. The main factors governing the extent of inerti al effect on sheet deformation pattern are investigated by energy method, and th e approach to the selection of reasonable tool speed for dynamic analysis of sta mping processes is proposed. The effectiveness of the present approach is furthe r demonstrated and justified by the numerical result herewith provided.展开更多
Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.How...Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.展开更多
Discrete element method simulations of granular shear flows of frictional cylindrical particles are performed. From the simulations, solid-phase pressure, shear stress, and bulk friction coefficient μ can be measured...Discrete element method simulations of granular shear flows of frictional cylindrical particles are performed. From the simulations, solid-phase pressure, shear stress, and bulk friction coefficient μ can be measured, allowing the investigation of the effects of particle properties on the macroscopic flow behaviors. Thus, the inertial number I based rheological models, which were frequently used for the spherical particles in the previous work, are examined for the applicability to cylindrical particles in the present study. It is found that the particle aspect ratio, interparticle friction coefficient, and particle size polydispersity all affect the bulk friction coefficient-inertial number correlation and the solid volume fraction-inertial number correlation, and their effects vary in different flow regimes, which exhibit different mechanical behaviors.展开更多
Extrusion, melt spinning, glass fiber production, food processing, and mechanical molding rely on heat transmission. Isothermal techniques have been employed in highly structured equipment and living cell temperature ...Extrusion, melt spinning, glass fiber production, food processing, and mechanical molding rely on heat transmission. Isothermal techniques have been employed in highly structured equipment and living cell temperature regulators. The flow and heat properties of CuO nanofluids flowing through a moving cylindrical isothermal conduit were examined, in the presence of nanoparticles and viscous dissipation. Two-dimensional flows of an incompressible Newtonian fluid via a cylindrical conduit with uniform surface velocity and temperature were utilized. The flow’s partial differential equations were transformed to a non-dimensional form and numerically solved using a finite difference scheme built in the C++ program. The effect of nanoparticle size (0.0 to 0.6) and viscous dissipation (0, 20, 40) on heat behavior and fluid movement are examined and profiles are used to present the numerical findings. The findings revealed that decreasing the variable nanoparticle parameter increased fluid velocity, stream function, and circulation while decreasing fluid temperature. The temperature of the fluid rises in direct proportion, as the viscous dissipation factor improves. This study improves understanding of the viscous flow and heat behavior of boundary layer problems when a nanofluid is used as the heat transfer working fluid in various engineering isothermal processes such as boiling and condensation.展开更多
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed...To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.展开更多
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma...The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.展开更多
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si...By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.展开更多
Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingopti...Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingoptimized nanodevices.In this paper,the mechanical behaviour and vibration property of BPNTs are studied viaorthotropic cylindrical shell model and molecular dynamics(MD)simulation.The vibration frequencies of twochiral BPNTs are analysed systematically.According to the results of MD calculations,it is revealed that thenatural frequencies of two BPNTs with approximately equal sizes are unequal at each order,and that the naturalfrequencies of armchair BPNTs are higher than those of zigzag BPNTs.In addition,an armchair BPNTs witha stable structure is considered as the object of research,and the vibration frequencies of BPNTs of differentsizes are analysed.When comparing the MD results,it is found that both the isotropic cylindrical shell modeland orthotropic cylindrical shell model can better predict the thermal vibration of the lower order modes of thelonger BPNTs better.However,for the vibration of shorter and thinner BPNTs,the prediction of the orthotropiccylindrical shell model is obviously superior to the isotropic shell model,thereby further proving the validity ofthe shell model that considers orthotropic for BPNTs.展开更多
To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the o...To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system.展开更多
In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples a...In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.展开更多
The steady flow behavior in terminal bronchus of human lung for cylindrical channel of porous medium has been studied. The governing equations have been solved analytically and numerically for cylindrical channel. Fin...The steady flow behavior in terminal bronchus of human lung for cylindrical channel of porous medium has been studied. The governing equations have been solved analytically and numerically for cylindrical channel. Finite difference method is incorporated to simulate the problem. The numerical results are compared with square duct channel for different parametric effect. It is observed that the flow rate is increased in cylindrical channel compared to square duct channel for the increasing value of pressure gradient, porosity and permeability. On the contrary, the flow rate is decreased in square duct channel compared to cylindrical channel for increasing value of viscosity. Flow rate in both channels is analyzed and compared for non-porous medium also. It is observed that flow rate is increased very high in cylindrical channel compared to square duct channel for both medium.展开更多
The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a dia...The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a diameter of less than 3 mm by the rotary scan method,the measurement uncertainty of the cylindrical workpiece with a diameter of 3 mm and length of 50 mm which is measured by a roundness measuring machine,is evaluated according to GUM(Guide to the Expression of Uncertainty in Measurement)as an example.Since the uncertainty caused by the eccentricity of the measured workpiece is different with the dimension changing,the measurement uncertainty of cylindrical workpieces with other dimensions can be evaluated the same as the diameter of 3 mm but with different eccentricity.Measurement uncertainty caused by different eccentricities concerning the dimension of the measured cylindrical workpiece is set to simulate the evaluations.Compared to the target value of the measurement uncertainty of 0.1μm,the measurable dimensions of the cylindrical workpiece can be obtained.Experiments and analysis are presented to quantitatively evaluate the reliability of the rotary-scan method for the roundness measurement of cylindrical workpieces.展开更多
A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, which consists of quenching, power spinning and recrystallization annealing. The microstructural evolution...A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, which consists of quenching, power spinning and recrystallization annealing. The microstructural evolution during the different process stages and macroforming quality of the spun parts made of ASTM 1020 steel are investigated. The results show that the microstructures of the ferrites and pearlites in the ASTM 1020 steel are transformed to the lath martensites after quenching. The martensite laths obtained by quenching are refined to 87 nm and a small amount of nanoscale deformation twins with an average thickness of 20 nm is generated after performing a 3-pass stagger spinning with 55% thinning ratio of wall thickness, where the equivalent strain required is only 0.92. The equiaxial ferritic grains with an average size of 160 nm and nano-carbides are generated by subsequent recrystallization annealing at 480°C for 30 min. The spun parts with high dimensional precision and low surface roughness are obtained by the forming method developed in this work, combining quenching with 3-pass stagger spinning and recrystallization annealing.展开更多
基金supported by the National Defense Basic Scientific Research Program of China(Grant numbers JCKY2019427D002)
文摘To reduce the stitching error of circularity measurement of small cylindrical workpieces(Diameter less than 3 mm)by the segmenting-stitching method,arc contour extraction is analyzed in this paper.The coordinates of cross-sectional circle of a small cylindrical part are segmented into several equal arcs to be obtained by a two-dimensional coordinate measuring machine.The circularity contour of the small cylindrical part can be formed by stitching a series of arc contours which are calculated by the obtained arc coordinate data.Due to the different measuring pressure angles of different measuring positions,the accuracy of obtained arc coordinate points is different.The bigger the pressure angle is,the accurate the obtained arc coordinate data are.The experiments show that the accuracy of two ends of the arc data is not as good as the central part.Therefore,the two ends of the obtained arc data are appropriately to be cut off,namely,only the central part of the arc data are extracted to be used for the stitching.As a result,the mean value of the matching coefficient is enhanced by 12%,the deviation between the overlap part of the neighbouring arc contour is reduced by 26%,and the average curvature of the arc contours is improved with the extraction method.Thus,the accuracy of the stitched circularity contour can be improved by this extraction procedure in the segmenting-stitching method for the circularity measurement of the small cylindrical parts.
基金Supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province(2011112TSJ0149)Jiangsu Key Laboratory of Process Enhancement & New Energy Equipment Technology at Nanjing University of Technology,China
文摘In this study, a three-dimensional model based on RANS, slender-body theory and Newton-Euler dynamics is established to study the number concentration, one of the most important fluidization characteristics of cylindrical particles. Also, the effects of interaction between cylindrical particles are taken into account by introducing the rigid collision dynamics. To validate the model, the fluidization experiments of cylindrical particles in a cold-state fluidized bed are carried out. The number concentration characteristics of cylindrical particles are obtained from computational fluid dynamics (CFD) simulation. It is found that cylindrical particles arriving at the exit of the riser the earliest come from the near-wall regions, the horizontal transfer of so many cylindrical particles from the radial centre regions to the near-wall regions is evident. Meanwhile, there is no distinct relationship between the number concentration and inlet wind velocity.
基金The project supported by the National Natural Science Foundation of China for Distinguished Scholars(19925210)
文摘The sedimentations of two cylindrical particles in three different initial relative po- sitions are numerically simulated using the lattice Boltzmann method.The movement characteristics and particle interactions during their sedimentation are presented and discussed in detail.The results show that,(i)if the two particles are released parallel but separated horizontally,they push away each other,rotate inwards and separate horizontally as they fall;(ii)if the two particles are released par- allel but separated vertically,the sedimentation behavior can be classified into three stages:trailing, tumbling and separating;(iii)if the two particles are released perpendicular but separated vertically, the sedimentation behavior can be characterized as:trailing and rotating,touching and sliding.In order to validate our simulation,experiments were also conducted and the results agree well with the numerical ones.
基金Projects(51305385,51305386)supported by the National Natural Science Foundation of ChinaProject(QN20131080)supported by the Science Research Youth Foundation of Hebei Province Universities,China
文摘The cylindrical part of sheet metal based on hot-granule medium-pressure forming (HGMF) technology was investigated.The stress functions of the free deformation zone and the fracture instability theory were combined to establish the analytical expression of the critical pressure of punch. The results show that the active friction between the granule medium and the sheet metal, as well as the non-uniform internal pressure presented by the solid granule medium, can obviously improve the forming performance of the sheet metal. The critical pressure of punch increases with the increment of the friction coefficient between the granule medium and sheet metal, as well as the plastic strain ratio, whereas it decreases with the increase of the material-hardening exponent. Furthermore, the impact on the critical pressure from high to low order is the plastic strain ratio, the friction coefficient,and material-hardening exponent. The deep-drawing experiment with HGMF technology on AZ31B magnesium alloy sheet verified the instability theory.Key words: hot-granule
文摘Based on the momentum and constitutive equations, the modified Orr_Sommerfeld equation describing the flow stability in a cylindrical particle two_phase flow was derived.For a cylindrical particle two_phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect_ratio are, the more obvious the suppression effect is.
文摘The orientation distribution function of cylindrical particle suspensions was deduced and numerically simulated, and an application was taken in a wedge-shaped flow field. The relationship between the orientation distribution function and particle orientation angles was obtained. The results show that comparing with the most probable angle distribution which comes to being in short time, the distribution of the steady state doesn't vary much. in range; the main difference is the anti-clockwise rotation in the right and upper field, that is, particles rotate more at the points where the velocity gradients are larger. The most probable orientations are close to the direction of local streamlines. In the direction of streamlines, with poleradius decreasing, the most probable angles increase, but the angles between their orientations and the local streamlines decrease.
基金Supported by the National Natural Science Foundation of China(No.20473034) the Taihu Scholar Foundation of SouthernYangtze University(2003).
文摘With the help of the method of separation of variables and the Debye-Hüchel approximation, the Poisson-Boltzmann equation that describes the distribution of the potential in the electrical double layer of a cylindrical particle with a limited length has been firstly solved under a very low potential condition. Then with the help of the functional analysis theory this equation has been further analytically solved under general potential conditions and consequently, the corresponding surface charge densities have been obtained. Both the potential and the surface charge densities cointide with those results obtained from the Debye-Hüchel approximation when the very low potential of zeψ〈〈kT is introduced.
文摘In order t o evaluate inertial effect on sheet deformation in the simulation of stamping pr ocesses by dynamic explicit FEM, an analytic model is established for analyzing cylindrical cup drawing process. The main factors governing the extent of inerti al effect on sheet deformation pattern are investigated by energy method, and th e approach to the selection of reasonable tool speed for dynamic analysis of sta mping processes is proposed. The effectiveness of the present approach is furthe r demonstrated and justified by the numerical result herewith provided.
基金supported by the National Nat-ural Science Foundation of China(Grant Nos.51775194 and 52090043).
文摘Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.
基金The National Natural Science Foundation of China(grant numbers 11872333,11272061,91852205)the Natural Science Foundation of Zhejiang Province(grant number LR19A020001)the Fundamental Research Funds for Central Universities(grant number 2017ZY37)are acknowledged for financial supports.
文摘Discrete element method simulations of granular shear flows of frictional cylindrical particles are performed. From the simulations, solid-phase pressure, shear stress, and bulk friction coefficient μ can be measured, allowing the investigation of the effects of particle properties on the macroscopic flow behaviors. Thus, the inertial number I based rheological models, which were frequently used for the spherical particles in the previous work, are examined for the applicability to cylindrical particles in the present study. It is found that the particle aspect ratio, interparticle friction coefficient, and particle size polydispersity all affect the bulk friction coefficient-inertial number correlation and the solid volume fraction-inertial number correlation, and their effects vary in different flow regimes, which exhibit different mechanical behaviors.
文摘Extrusion, melt spinning, glass fiber production, food processing, and mechanical molding rely on heat transmission. Isothermal techniques have been employed in highly structured equipment and living cell temperature regulators. The flow and heat properties of CuO nanofluids flowing through a moving cylindrical isothermal conduit were examined, in the presence of nanoparticles and viscous dissipation. Two-dimensional flows of an incompressible Newtonian fluid via a cylindrical conduit with uniform surface velocity and temperature were utilized. The flow’s partial differential equations were transformed to a non-dimensional form and numerically solved using a finite difference scheme built in the C++ program. The effect of nanoparticle size (0.0 to 0.6) and viscous dissipation (0, 20, 40) on heat behavior and fluid movement are examined and profiles are used to present the numerical findings. The findings revealed that decreasing the variable nanoparticle parameter increased fluid velocity, stream function, and circulation while decreasing fluid temperature. The temperature of the fluid rises in direct proportion, as the viscous dissipation factor improves. This study improves understanding of the viscous flow and heat behavior of boundary layer problems when a nanofluid is used as the heat transfer working fluid in various engineering isothermal processes such as boiling and condensation.
基金Supports from the National Natural Science Foundation of China(Grant No.12272094,No.52205185 and No.51975123)the Natural Science Foundation of Fujian Province of China(Grant No.2022J01541 and No.2020J05102)the Key Project of National Defence Innovation Zone of Science and Technology Commission of CMC(Grant No.XXX-033-01)。
文摘To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51978336 and 11702117)the Science and Technology Plan Project of Department of Communications of Zhejiang Province(Grant No.2021051)Nantong City Social Livelihood Science and Technology Project(Grant No.MS22022067).
文摘The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175111 and 12235007)the K.C.Wong Magna Fund in Ningbo University。
文摘By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.
基金supported by the National Science Fund for Distin-guished Young Scholars(Grants No.11925205)the National Natural Science Foundation of China(Grant Nos.51921003 and U2341230).
文摘Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingoptimized nanodevices.In this paper,the mechanical behaviour and vibration property of BPNTs are studied viaorthotropic cylindrical shell model and molecular dynamics(MD)simulation.The vibration frequencies of twochiral BPNTs are analysed systematically.According to the results of MD calculations,it is revealed that thenatural frequencies of two BPNTs with approximately equal sizes are unequal at each order,and that the naturalfrequencies of armchair BPNTs are higher than those of zigzag BPNTs.In addition,an armchair BPNTs witha stable structure is considered as the object of research,and the vibration frequencies of BPNTs of differentsizes are analysed.When comparing the MD results,it is found that both the isotropic cylindrical shell modeland orthotropic cylindrical shell model can better predict the thermal vibration of the lower order modes of thelonger BPNTs better.However,for the vibration of shorter and thinner BPNTs,the prediction of the orthotropiccylindrical shell model is obviously superior to the isotropic shell model,thereby further proving the validity ofthe shell model that considers orthotropic for BPNTs.
基金funded by the National Natural Science Foundations of China(Nos.12272176,U2037603).
文摘To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system.
文摘In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.
文摘The steady flow behavior in terminal bronchus of human lung for cylindrical channel of porous medium has been studied. The governing equations have been solved analytically and numerically for cylindrical channel. Finite difference method is incorporated to simulate the problem. The numerical results are compared with square duct channel for different parametric effect. It is observed that the flow rate is increased in cylindrical channel compared to square duct channel for the increasing value of pressure gradient, porosity and permeability. On the contrary, the flow rate is decreased in square duct channel compared to cylindrical channel for increasing value of viscosity. Flow rate in both channels is analyzed and compared for non-porous medium also. It is observed that flow rate is increased very high in cylindrical channel compared to square duct channel for both medium.
基金supported by the National Defense Basic Scientific Research Program of China(Grant numbers JCKY2019427D002)。
文摘The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a diameter of less than 3 mm by the rotary scan method,the measurement uncertainty of the cylindrical workpiece with a diameter of 3 mm and length of 50 mm which is measured by a roundness measuring machine,is evaluated according to GUM(Guide to the Expression of Uncertainty in Measurement)as an example.Since the uncertainty caused by the eccentricity of the measured workpiece is different with the dimension changing,the measurement uncertainty of cylindrical workpieces with other dimensions can be evaluated the same as the diameter of 3 mm but with different eccentricity.Measurement uncertainty caused by different eccentricities concerning the dimension of the measured cylindrical workpiece is set to simulate the evaluations.Compared to the target value of the measurement uncertainty of 0.1μm,the measurable dimensions of the cylindrical workpiece can be obtained.Experiments and analysis are presented to quantitatively evaluate the reliability of the rotary-scan method for the roundness measurement of cylindrical workpieces.
基金supported by National Natural Science Foundation of China(Grant No.51075153)Natural Science Foundation of Guangdong Province(Grant No.10151040301000000)+1 种基金Key Laboratory of Precision Equipment and Manufacturing Technology of Guangdong Province(Grant No.PEMT1202)the EU FP7 Marie Curie International Research Staff Exchange Scheme(IRSES)Mat Pro Future Project(Grant No.318968)
文摘A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, which consists of quenching, power spinning and recrystallization annealing. The microstructural evolution during the different process stages and macroforming quality of the spun parts made of ASTM 1020 steel are investigated. The results show that the microstructures of the ferrites and pearlites in the ASTM 1020 steel are transformed to the lath martensites after quenching. The martensite laths obtained by quenching are refined to 87 nm and a small amount of nanoscale deformation twins with an average thickness of 20 nm is generated after performing a 3-pass stagger spinning with 55% thinning ratio of wall thickness, where the equivalent strain required is only 0.92. The equiaxial ferritic grains with an average size of 160 nm and nano-carbides are generated by subsequent recrystallization annealing at 480°C for 30 min. The spun parts with high dimensional precision and low surface roughness are obtained by the forming method developed in this work, combining quenching with 3-pass stagger spinning and recrystallization annealing.