期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
AMENABILITY OF GROUP IN THE C~*-DYNAMIC SYSTEM
1
作者 方小春 《Chinese Science Bulletin》 SCIE EI CAS 1992年第14期1150-1152,共3页
For convenience, all notations and terminologies are referred to Ref. [1]. It is well known that for a C<sup>*</sup>-dynamic system (A, G, α), G<sub>α</sub><sup>×</sup> A =... For convenience, all notations and terminologies are referred to Ref. [1]. It is well known that for a C<sup>*</sup>-dynamic system (A, G, α), G<sub>α</sub><sup>×</sup> A = G<sub>αγ</sub><sup>×</sup> A, if G is amenable. About the inverse, few discussions have been seen. 展开更多
关键词 c~*-dynamic SYSTEM amenability
原文传递
Notes on the Mapping Torus of C~*-Algebra
2
作者 李炳仁 林青 《Chinese Science Bulletin》 SCIE EI CAS 1993年第2期97-99,共3页
Let (A, Z, α) be a C<sup>*</sup>-dynamical system, and α<sup>n</sup>=id (n is a fixed positive integer). A natural problem is how the C<sup>*</sup>-crossed product A ×<... Let (A, Z, α) be a C<sup>*</sup>-dynamical system, and α<sup>n</sup>=id (n is a fixed positive integer). A natural problem is how the C<sup>*</sup>-crossed product A ×<sub>α</sub>Z relates to A×<sub>α</sub>Z<sub>n</sub>. The answer is the following: A×<sub>α</sub>Z≌M<sub>A×<sub>α</sub>Z<sub>n</sub></sub>,where M<sub>A×<sub>α</sub>Z<sub>n</sub></sub> is the mapping torus of , and (A×<sub>α</sub>Z<sub>n</sub>, <sub>n</sub>, )is the dual system 展开更多
关键词 c~*-dynamical SYSTEM CROSSED product dual SYSTEM MAPPING torus.
原文传递
Topologically conjugate classifications of the translation actions on low-dimensional compact connected Lie groups
3
作者 Xiaotian Pan Bingzhe Hou 《Science China Mathematics》 SCIE CSCD 2021年第5期963-1010,共48页
In this article, we focus on the left translation actions on noncommutative compact connected Lie groups with topological dimension 3 or 4, consisting of SU(2), U(2), SO(3), SO(3)×S^(1) and Spin ^(C)(3). We defin... In this article, we focus on the left translation actions on noncommutative compact connected Lie groups with topological dimension 3 or 4, consisting of SU(2), U(2), SO(3), SO(3)×S^(1) and Spin ^(C)(3). We define the rotation vectors(numbers) of the left actions induced by the elements in the maximal tori of these groups, and utilize rotation vectors(numbers) to give the topologically conjugate classification of the left actions. Algebraic conjugacy and smooth conjugacy are also considered. As a by-product, we show that for any homeomorphism f : L(p,-1) × S^(1)→ L(p,-1) × S^(1), the induced isomorphism(π■f■i)_(*) maps each element in the fundamental group of L(p,-1) to itself or its inverse, where i : L(p,-1) → L(p,-1) × S^(1) is the natural inclusion and π : L(p,-1) × S^(1)→ L(p,-1) is the projection. 展开更多
关键词 topological conjugacy rotation vectors translation actions c~*-dynamical system classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部