A solar-driven photoelectrochemical(PEC)cell is emerging as one of the promising clean hydrogen generation systems.Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell...A solar-driven photoelectrochemical(PEC)cell is emerging as one of the promising clean hydrogen generation systems.Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell has been a primitive approach to boost its performance.This study presents that a molybdenum disulfide(MoS_(2))nanoflakes photoanode on 3-dimensional(3D)porous carbon spun fabric(CSF)as a substrate effectively enhances hydrogen generations due to sufficiently enlarged surface area.MoS_(2)is grown on CSFs utilizing a hydrothermal method.Among three different MoS_(2)coating morphologies depending on the amount of MoS_(2)precursor and hydrothermal growth time,film shape MoS_(2)on CSFs had the largest surface area,exhibiting the highest photocurrent density of 26.48 mA/cm^(2)and the highest applied bias photon-to-current efficiency(ABPE)efficiency of 5.32%at 0.43 VRHE.Furthermore,with a two-step growth method of sputtering and a subsequent hydrothermal coating,continuous TiO_(2)/MoS_(20 heterojunctions on a porous CSF further promoted the photoelectrochemical performances due to their optimized bandgap alignments.Enlarged surface area,enhanced charge transfer,and utilization of visible light enable a highly efficient MoS_(2)/TiO_(2)/CSF photoanode with a photocurrent density of 33.81 mA/cm^(2)and an ABPE of 6.97%at 0.87 VRHE.The hydrogen generation amount of the PEC cell with MoS_(2)/TiO_(2)/CSF photoanode is 225.4μmol/L after light irradiation of 60 s.展开更多
Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harves...Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harvesting in an evaporator remains challenging.Here,inspired by nature,a 3D honeycomb-like fabric decorated with hydrophilic Ti_(3)C_(2)Tx(MXene)is innovatively designed and successfully woven as solar evaporator.The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption,synergistically cooperating with light absorbance of MXene.The minimum thermal loss is available by constructing the localized photothermal generation,contributed by a thermal-insulating barrier connected with 1D water path,and the concave structure of efficiently recycling convective and radiative heat loss.The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m^(−2) h^(−1) under one sun irradiation.Moreover,assisted by a 1D water path in the center,the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine,enabling the complete separation of water/SOLUTE AND EFFICIENT SALT HARVESTING.THIS RESEARCH provides a large-scale manufacturing route of high-performance solar steam generator.展开更多
Proteins are a class of biomaterials having a vast array of functions, including the catalysis of metabolic reactions, DNA replication, stimuli response and transportation of molecules. Recent progress in laser-based...Proteins are a class of biomaterials having a vast array of functions, including the catalysis of metabolic reactions, DNA replication, stimuli response and transportation of molecules. Recent progress in laser-based fabrication technologies has enabled the formation of three-dimensional (3D) proteinaceous micro- and nano-structures by femtosecond laser cross-linking, which has expanded the possible applications of proteins. This article reviews the current knowledge andrecent advancements in the femtosecond laser cross-linking of proteins. An overview of previous studies related to fabri-cation using a variety of proteins and detailed discussions of the associated mechanisms are provided. In addition, ad-vances and applications utilizing specific protein functions are introduced. This review thus provides a valuable summaryof the 3D micro- and nano-fabrication of proteins for biological and medical applications.展开更多
To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication,we apply the simultaneous spatiotemporal focusing(SSTF)technique to a high-repetition-rate femtosecond(fs)fiber laser system...To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication,we apply the simultaneous spatiotemporal focusing(SSTF)technique to a high-repetition-rate femtosecond(fs)fiber laser system.In the SSTF scheme,we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher.We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8μm to 22μm using the SSTF of fs laser pulses.Moreover,we systematically investigate the influences of pulse energy,writing speed,processing depth,and spherical aberration on the fabrication resolution.As a proof-of-concept demonstration,the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes.The developed technique can be extended to many applications such as advanced photonics,3D biomimetic printing,micro-electromechanical systems,and lab-on-a-chips.展开更多
Broken gangue has been extensively used in rockfill dams,subgrade,embankment,foundation cushion and other engineering construction.The deformation characteristics of broken gangue under the bearing compression play a ...Broken gangue has been extensively used in rockfill dams,subgrade,embankment,foundation cushion and other engineering construction.The deformation characteristics of broken gangue under the bearing compression play a decisive role in the firmness,stability and safety of these structures(buildings),and the meso-fabric change of broken gangue under the bearing compression significantly affects its macro deformation.In this study,the transparent characterization and quantitative analysis of 3D fabric of broken gangue under the bearing compression were performed through CT scanning test,image processing and 3D reconstruction technology,and the influence mechanism of internal fabric of broken gangue on its macro deformation was revealed.The results show that:In the loading stage of 0–2 MPa,the sharp corners,thin edges on the blocks and the bar-shaped and blade-shaped blocks with poor regularity are broken first under the bearing compression;in the loading stage of 2–8 MPa,a large number of larger particles in the sample are crushed in the mode of fragmentation;in the loading stage of 8–10 MPa,the breakage degree of samples is relieved.The axial displacement of the block inside the sample occurs,as well as the lateral displacement of the block converging to the central axis of the sample.In the rapid deformation stage,the macro deformation of the broken gangue is mainly caused by the rearrangement and adjustment of the block structure and the breakage of the block;in the slow deformation stage,it is mainly caused by the breakage of the block;in the stable deformation stage,it is mainly caused by the optimization and adjustment of the bearing skeleton in the sample.展开更多
Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this...Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this paper,six types of 3 D fabric sandwich composites were developed in terms of compressive and flexural properties as a function of pile height( 10, 20 and30 mm) and pile distance( 16, 24 and 32 mm) in pile structures. The mechanical characteristics and the damage modes of the 3 D fabric sandwich composites under compressive and flexural load conditions were investigated. Besides,the influence of pile height and pile distance on the 3 D fabric sandwich composites mechanical properties was analyzed. The results showed that the compressive properties decreased with the increase of the pile height and the pile distance. Flexural properties increased with the increase of pile height, while decreased with the increase of pile distance.展开更多
In order to avoid the delamination of traditional laminated tubular composites,on an ordinary loom,the 3D woven special⁃shaped square tubular fabrics were woven with environment⁃friendly basalt filament yarns,and then...In order to avoid the delamination of traditional laminated tubular composites,on an ordinary loom,the 3D woven special⁃shaped square tubular fabrics were woven with environment⁃friendly basalt filament yarns,and then the 3D woven special⁃shaped square tubular composites were prepared with epoxy resin by a vacuum⁃assisted resin transfer molding(VARTM)process.Through experiments and software fitting,the axial compression properties of composites were analyzed.The polynomial fitting formulas of load⁃displacement curve and energy⁃displacement curve were obtained by using least square methods.The results showed that the 3D woven special⁃shaped square tubular composites had good axial compression performance,and with the increase of the composite thickness,compressive strength and energy absorption increased significantly.The failure mode was analyzed in the paper,thus revealing the failure stress propagation,local stress concentration,and failure morphology.It provides an effective reference for the design and application of the 3D woven special⁃shaped square tubular composite.展开更多
The unique characteristics of ultrafast lasers,such as picosecond and femtosecond lasers,have opened up new avenues in materials processing that employ ultrashort pulse widths and extremely high peak intensities.Thus,...The unique characteristics of ultrafast lasers,such as picosecond and femtosecond lasers,have opened up new avenues in materials processing that employ ultrashort pulse widths and extremely high peak intensities.Thus,ultrafast lasers are currently used widely for both fundamental research and practical applications.This review describes the characteristics of ultrafast laser processing and the recent advancements and applications of both surface and volume processing.Surface processing includes micromachining,microand nanostructuring,and nanoablation,while volume processing includes two-photon polymerization and three-dimensional(3D)processing within transparent materials.Commercial and industrial applications of ultrafast laser processing are also introduced,and a summary of the technology with future outlooks are also given.展开更多
Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composite...Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composites are analyzed, and the possible approach of improving the properties of the materials is presented, that is, a new type of 3D full 5-directional braided composites is developed. The methods of making this type of preform are proposed. It is pointed out that the four-step braiding which is the most possible to realize industrialized production almost has no effect on the composites' properties. By analyzing the simulation model,the advantages of the material compared with the 3D 4-directional and 5-directional materials are presented. Finally, a microstructural model is analyzed to lay the foundation for the future theoretical analysis of these composites.展开更多
Two-dimensional(2D) periodical Au and indium tin oxide(ITO) nanocomposite arrays have been fabricated based on a self-assembled nanosphere lithography technique. A button-shaped Au nanoparticle was formed on each holl...Two-dimensional(2D) periodical Au and indium tin oxide(ITO) nanocomposite arrays have been fabricated based on a self-assembled nanosphere lithography technique. A button-shaped Au nanoparticle was formed on each hollow hemisphere-shaped ITO shell. Importantly, the underlying formation mechanism during the thermal treatment has been thoroughly explored by comparing structures resulting from different deposition conditions in detail. Compared to the Au nanoparticle arrays without ITO shells, the Au/ITO nanocomposite arrays showed a stronger localized surface plasmon resonance effect and higher absorption in the near-infrared(NIR) region, benefiting from the free-electron interaction enhancement between Au and ITO. The nonlinear optical properties were investigated using a modified femtosecond intensity-scan system, and the results demonstrated Au/ITO nanocomposite arrays with a remarkable two-photon absorption saturation effect for femtosecond pulses at 1030 nm. The versatile NIR optical responses indicate the great potential of the elaborately prepared 2D periodical Au/ITO nanocomposite arrays in many applications such as solar cells, photocatalysis,and novel nano optoelectronic devices.展开更多
A thin shell model refers to a surface or structure,where the object’s thickness is considered negligible.In the context of 3D printing,thin shell models are characterized by having lightweight,hollow structures,and ...A thin shell model refers to a surface or structure,where the object’s thickness is considered negligible.In the context of 3D printing,thin shell models are characterized by having lightweight,hollow structures,and reduced material usage.Their versatility and visual appeal make them popular in various fields,such as cloth simulation,character skinning,and for thin-walled structures like leaves,paper,or metal sheets.Nevertheless,optimization of thin shell models without external support remains a challenge due to their minimal interior operational space.For the same reasons,hollowing methods are also unsuitable for this task.In fact,thin shell modulation methods are required to preserve the visual appearance of a two-sided surface which further constrain the problem space.In this paper,we introduce a new visual disparity metric tailored for shell models,integrating local details and global shape attributes in terms of visual perception.Our method modulates thin shell models using global deformations and local thickening while accounting for visual saliency,stability,and structural integrity.Thereby,thin shell models such as bas-reliefs,hollow shapes,and cloth can be stabilized to stand in arbitrary orientations,making them ideal for 3D printing.展开更多
基金supported by the KIST Institution Program(2E32634,2E33323,2E32942)Brain Pool program funded by the Ministry of Science and ICT through the NRF(2020H1D3A1A04080324)Cooperation foundation creation project through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2023-00239634).
文摘A solar-driven photoelectrochemical(PEC)cell is emerging as one of the promising clean hydrogen generation systems.Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell has been a primitive approach to boost its performance.This study presents that a molybdenum disulfide(MoS_(2))nanoflakes photoanode on 3-dimensional(3D)porous carbon spun fabric(CSF)as a substrate effectively enhances hydrogen generations due to sufficiently enlarged surface area.MoS_(2)is grown on CSFs utilizing a hydrothermal method.Among three different MoS_(2)coating morphologies depending on the amount of MoS_(2)precursor and hydrothermal growth time,film shape MoS_(2)on CSFs had the largest surface area,exhibiting the highest photocurrent density of 26.48 mA/cm^(2)and the highest applied bias photon-to-current efficiency(ABPE)efficiency of 5.32%at 0.43 VRHE.Furthermore,with a two-step growth method of sputtering and a subsequent hydrothermal coating,continuous TiO_(2)/MoS_(20 heterojunctions on a porous CSF further promoted the photoelectrochemical performances due to their optimized bandgap alignments.Enlarged surface area,enhanced charge transfer,and utilization of visible light enable a highly efficient MoS_(2)/TiO_(2)/CSF photoanode with a photocurrent density of 33.81 mA/cm^(2)and an ABPE of 6.97%at 0.87 VRHE.The hydrogen generation amount of the PEC cell with MoS_(2)/TiO_(2)/CSF photoanode is 225.4μmol/L after light irradiation of 60 s.
基金supported by the National Natural Science Foundation of China(No.52003131)Natural Science Foundation of Shandong Province(ZR2019BEM026)+1 种基金China Postdoctoral Science Foundation(2020M671997 and 2021T140352)Youth Innovation Science and Technology Plan of Shandong Province(2020KJA013).
文摘Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harvesting in an evaporator remains challenging.Here,inspired by nature,a 3D honeycomb-like fabric decorated with hydrophilic Ti_(3)C_(2)Tx(MXene)is innovatively designed and successfully woven as solar evaporator.The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption,synergistically cooperating with light absorbance of MXene.The minimum thermal loss is available by constructing the localized photothermal generation,contributed by a thermal-insulating barrier connected with 1D water path,and the concave structure of efficiently recycling convective and radiative heat loss.The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m^(−2) h^(−1) under one sun irradiation.Moreover,assisted by a 1D water path in the center,the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine,enabling the complete separation of water/SOLUTE AND EFFICIENT SALT HARVESTING.THIS RESEARCH provides a large-scale manufacturing route of high-performance solar steam generator.
文摘Proteins are a class of biomaterials having a vast array of functions, including the catalysis of metabolic reactions, DNA replication, stimuli response and transportation of molecules. Recent progress in laser-based fabrication technologies has enabled the formation of three-dimensional (3D) proteinaceous micro- and nano-structures by femtosecond laser cross-linking, which has expanded the possible applications of proteins. This article reviews the current knowledge andrecent advancements in the femtosecond laser cross-linking of proteins. An overview of previous studies related to fabri-cation using a variety of proteins and detailed discussions of the associated mechanisms are provided. In addition, ad-vances and applications utilizing specific protein functions are introduced. This review thus provides a valuable summaryof the 3D micro- and nano-fabrication of proteins for biological and medical applications.
基金supported by the National Key Research and Development Program of China(2019YFA0705000,2022YFA1404800)National Natural Science Foundation of China(12004221,12174107,12192254,11734009,12192251,92250304,11974218)+4 种基金Postdoctoral Innovation Talents Support Program of Shandong Province(No.SDBX2019005)Science and Technology Commission of Shanghai Municipality(21DZ1101500)Local science and technology development project of the central government(YDZX20203700001766)Shanghai Municipal Science and Technology Major ProjectNatural Science Foundation of Shandong Province(ZR2021ZD02).
文摘To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication,we apply the simultaneous spatiotemporal focusing(SSTF)technique to a high-repetition-rate femtosecond(fs)fiber laser system.In the SSTF scheme,we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher.We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8μm to 22μm using the SSTF of fs laser pulses.Moreover,we systematically investigate the influences of pulse energy,writing speed,processing depth,and spherical aberration on the fabrication resolution.As a proof-of-concept demonstration,the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes.The developed technique can be extended to many applications such as advanced photonics,3D biomimetic printing,micro-electromechanical systems,and lab-on-a-chips.
基金supported by the National Natural Science Foundation of China(Nos.52104103,52022107,52174128)the Natural Science Foundation of Jiangsu Province(Nos.BK20210499,BK20190031)。
文摘Broken gangue has been extensively used in rockfill dams,subgrade,embankment,foundation cushion and other engineering construction.The deformation characteristics of broken gangue under the bearing compression play a decisive role in the firmness,stability and safety of these structures(buildings),and the meso-fabric change of broken gangue under the bearing compression significantly affects its macro deformation.In this study,the transparent characterization and quantitative analysis of 3D fabric of broken gangue under the bearing compression were performed through CT scanning test,image processing and 3D reconstruction technology,and the influence mechanism of internal fabric of broken gangue on its macro deformation was revealed.The results show that:In the loading stage of 0–2 MPa,the sharp corners,thin edges on the blocks and the bar-shaped and blade-shaped blocks with poor regularity are broken first under the bearing compression;in the loading stage of 2–8 MPa,a large number of larger particles in the sample are crushed in the mode of fragmentation;in the loading stage of 8–10 MPa,the breakage degree of samples is relieved.The axial displacement of the block inside the sample occurs,as well as the lateral displacement of the block converging to the central axis of the sample.In the rapid deformation stage,the macro deformation of the broken gangue is mainly caused by the rearrangement and adjustment of the block structure and the breakage of the block;in the slow deformation stage,it is mainly caused by the breakage of the block;in the stable deformation stage,it is mainly caused by the optimization and adjustment of the bearing skeleton in the sample.
基金National Key R&D Program of China(Nos.2016YFB0303104,2018YFC0810306)Jiangsu Overseas Visiting Scholar Program for University Prominent Younge Middle-aged Teachers and PresidentsSix Talent Peaks Project in Jiangsu Province,China(No.XCL-061)
文摘Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this paper,six types of 3 D fabric sandwich composites were developed in terms of compressive and flexural properties as a function of pile height( 10, 20 and30 mm) and pile distance( 16, 24 and 32 mm) in pile structures. The mechanical characteristics and the damage modes of the 3 D fabric sandwich composites under compressive and flexural load conditions were investigated. Besides,the influence of pile height and pile distance on the 3 D fabric sandwich composites mechanical properties was analyzed. The results showed that the compressive properties decreased with the increase of the pile height and the pile distance. Flexural properties increased with the increase of pile height, while decreased with the increase of pile distance.
基金Natural Science Foundation of Liaoning Province,China(No.2019⁃MS⁃017)。
文摘In order to avoid the delamination of traditional laminated tubular composites,on an ordinary loom,the 3D woven special⁃shaped square tubular fabrics were woven with environment⁃friendly basalt filament yarns,and then the 3D woven special⁃shaped square tubular composites were prepared with epoxy resin by a vacuum⁃assisted resin transfer molding(VARTM)process.Through experiments and software fitting,the axial compression properties of composites were analyzed.The polynomial fitting formulas of load⁃displacement curve and energy⁃displacement curve were obtained by using least square methods.The results showed that the 3D woven special⁃shaped square tubular composites had good axial compression performance,and with the increase of the composite thickness,compressive strength and energy absorption increased significantly.The failure mode was analyzed in the paper,thus revealing the failure stress propagation,local stress concentration,and failure morphology.It provides an effective reference for the design and application of the 3D woven special⁃shaped square tubular composite.
文摘The unique characteristics of ultrafast lasers,such as picosecond and femtosecond lasers,have opened up new avenues in materials processing that employ ultrashort pulse widths and extremely high peak intensities.Thus,ultrafast lasers are currently used widely for both fundamental research and practical applications.This review describes the characteristics of ultrafast laser processing and the recent advancements and applications of both surface and volume processing.Surface processing includes micromachining,microand nanostructuring,and nanoablation,while volume processing includes two-photon polymerization and three-dimensional(3D)processing within transparent materials.Commercial and industrial applications of ultrafast laser processing are also introduced,and a summary of the technology with future outlooks are also given.
文摘Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composites are analyzed, and the possible approach of improving the properties of the materials is presented, that is, a new type of 3D full 5-directional braided composites is developed. The methods of making this type of preform are proposed. It is pointed out that the four-step braiding which is the most possible to realize industrialized production almost has no effect on the composites' properties. By analyzing the simulation model,the advantages of the material compared with the 3D 4-directional and 5-directional materials are presented. Finally, a microstructural model is analyzed to lay the foundation for the future theoretical analysis of these composites.
基金Funding.National Natural Science Foundation of China(NSFC)(61308087,61405224,61522510,61675217)Natural Science Foundation of Shanghai(16ZR1440300)+4 种基金China Scholarship Council(CSC)Science Foundation Ireland(SFI)Chinese Academy of Sciences(CAS)(XDB16030700QYZDBSSW-JSC041)Science and Technology Commission of Shanghai Municipality(STCSM)(17XD1403900)
文摘Two-dimensional(2D) periodical Au and indium tin oxide(ITO) nanocomposite arrays have been fabricated based on a self-assembled nanosphere lithography technique. A button-shaped Au nanoparticle was formed on each hollow hemisphere-shaped ITO shell. Importantly, the underlying formation mechanism during the thermal treatment has been thoroughly explored by comparing structures resulting from different deposition conditions in detail. Compared to the Au nanoparticle arrays without ITO shells, the Au/ITO nanocomposite arrays showed a stronger localized surface plasmon resonance effect and higher absorption in the near-infrared(NIR) region, benefiting from the free-electron interaction enhancement between Au and ITO. The nonlinear optical properties were investigated using a modified femtosecond intensity-scan system, and the results demonstrated Au/ITO nanocomposite arrays with a remarkable two-photon absorption saturation effect for femtosecond pulses at 1030 nm. The versatile NIR optical responses indicate the great potential of the elaborately prepared 2D periodical Au/ITO nanocomposite arrays in many applications such as solar cells, photocatalysis,and novel nano optoelectronic devices.
基金supported by Grant No.61972232 from the National Natural Science Foundation of China(NSFC)by Grant No.2020ZLYS01 of the Key Research and Development Plan of Shandong Province of China.
文摘A thin shell model refers to a surface or structure,where the object’s thickness is considered negligible.In the context of 3D printing,thin shell models are characterized by having lightweight,hollow structures,and reduced material usage.Their versatility and visual appeal make them popular in various fields,such as cloth simulation,character skinning,and for thin-walled structures like leaves,paper,or metal sheets.Nevertheless,optimization of thin shell models without external support remains a challenge due to their minimal interior operational space.For the same reasons,hollowing methods are also unsuitable for this task.In fact,thin shell modulation methods are required to preserve the visual appearance of a two-sided surface which further constrain the problem space.In this paper,we introduce a new visual disparity metric tailored for shell models,integrating local details and global shape attributes in terms of visual perception.Our method modulates thin shell models using global deformations and local thickening while accounting for visual saliency,stability,and structural integrity.Thereby,thin shell models such as bas-reliefs,hollow shapes,and cloth can be stabilized to stand in arbitrary orientations,making them ideal for 3D printing.