Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
With the advanced development of computer-based enabling technologies, many engineering, medical, biology, chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many researc...With the advanced development of computer-based enabling technologies, many engineering, medical, biology, chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems. To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.展开更多
The needs for photo-realistic modelling of the complete details, and geometrically accurate 3D models are growing rapidly in several fields, especially in engineering and cultural heritage documentation. This paper ex...The needs for photo-realistic modelling of the complete details, and geometrically accurate 3D models are growing rapidly in several fields, especially in engineering and cultural heritage documentation. This paper explored the geometry of the Pictometry images (vertical and oblique) and the possibility of using this imagery in 3D modelling to produce photo-realistic and accurate models. In addition, merging terrestrial imagery with Pictometry imagery to get more ground level details has been investigated. All work has been carried out using the available software packages at the IESSG (Institute of Engineering Surveying and Space Geodesy) and using data provided by Blom Aerofilms Ltd. The results of the aerial triangulation of different Pictometry blocks showed that high quality image measurements have been achieved for all the image blocks. Extraction of 3D geometry for all buildings in the study area has been performed using both vertical Pictometry imagery and UltraCamD imagery. The successful combining of vertical and oblique Pictometry images provided an excellent opportunity to produce an efficient method of high quality urban model texturing. The integration of terrestrial images of building facades (whose texture needs enhancement) with the combined aerial imagery block has been successfully and automatically performed.展开更多
Mountainous regions have disadvantages in economic development because of harsh physical and climatic conditions.However,winter tourism activities are one of the key components for supporting economic development in t...Mountainous regions have disadvantages in economic development because of harsh physical and climatic conditions.However,winter tourism activities are one of the key components for supporting economic development in the highlands.Establishing a ski resort area supports direct and indirect employment in a region,and it stops immigration from mountainous regions to other places.This research aimed to assess the potential ski areas using a multi criteria evaluation technique in the Van region which is located in the eastern part of Türkiye.In this context,snow cover duration,sun effect,slope,slope length,elevation,population density,distance from main roads and lake visibility were used as input factors in the decision making process.Each factor was standardized using a fuzzy technique based on existing well-known ski centers in Türkiye.The weight of inputs was defined by applying a survey to the professional skiers.The most important factors were detected as transportation opportunities and snow covers whereas,the least important factors were elevation and population density.Additionally,lake visibility was very important to make a difference from other existing facilities in the region.Therefore,it was included as constraints and lake visible areas were extracted at the final stage of the research.Potential ski areas were mapped in three levels as professional,intermediate and beginner skiers.One of the suitable areas was selected as a sample projection and for the 3D simulation of the ski investment area.Potential costs and benefits were discussed.It was found that a ski tourism area investment can be amortized in 3 years in the region.展开更多
With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residentia...With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.展开更多
The microbiota-gut-brain axis(MGBA)has emerged as a key prospect in the bidirectional communication between two major organ systems:the brain and the gut.Homeostasis between the two organ systems allows the body to fu...The microbiota-gut-brain axis(MGBA)has emerged as a key prospect in the bidirectional communication between two major organ systems:the brain and the gut.Homeostasis between the two organ systems allows the body to function without disease,whereas dysbiosis has long-standing evidence of etiopathological conditions.The most common communication paths are the microbial release of metabolites,soluble neurotransmitters,and immune cells.However,each pathway is intertwined with a complex one.With the emergence of in vitro models and the popularity of three-dimensional(3D)cultures and Transwells,engineering has become easier for the scientific understanding of neurodegenerative diseases.This paper briefly retraces the possible communication pathways between the gut microbiome and the brain.It further elaborates on three major diseases:autism spectrum disorder,Parkinson’s disease,and Alzheimer’s disease,which are prevalent in children and the elderly.These diseases also decrease patients’quality of life.Hence,understanding them more deeply with respect to current advances in in vitro modeling is crucial for understanding the diseases.Remodeling of MGBA in the laboratory uses many molecular technologies and biomaterial advances.Spheroids and organoids provide a more realistic picture of the cell and tissue structure than monolayers.Combining them with the Transwell system offers the advantage of compartmentalizing the two systems(apical and basal)while allowing physical and chemical cues between them.Cutting-edge technologies,such as bioprinting and microfluidic chips,might be the future of in vitro modeling,as they provide dynamicity.展开更多
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ...Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.展开更多
According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarator...According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).展开更多
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under ...The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under the assumption that the rock was homogenous and isotropic at the mesoscopic scale.For the inherent mechanism,both models resulted from quasi-static flow in a slow P-wave diffusion mode,and the differences between them originated from saturated fluids and boundary conditions.On the other hand,for the characteristic frequencies of the models,the characteristic frequency of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it were misused and then compared to that of the layered White model.Both of them moved towards higher frequencies with increasing permeability and decreasing viscosity and diffusion length.The differences between them were due to the diffusion length.The diffusion length for the 1D poroelastic model was determined by the sample length,whereas that for the layered White model was determined by the length of the representative elementary volume(REV).Subsequently,a numerical example was presented to demonstrate the similarities and differences between the models.Finally,published experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.The prediction of the combined model was in good agreement with the experimental data,thereby validating the effectiveness of the 1D poroelastic model.Furthermore,the modified characteristic frequency in our study was much closer to the experimental data than the previous prediction,validating the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model.The investigation provided insight into the internal relationship between wave-induced fluid flow(WIFF)models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic modulus dispersion and attenuation caused by the WIFF at different scales.展开更多
Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine suc...Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.展开更多
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp...Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.展开更多
Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development...Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%.展开更多
Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensi...Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.展开更多
Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound seg...Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t...Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.展开更多
The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pu...The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.展开更多
To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology ...To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face.展开更多
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
文摘With the advanced development of computer-based enabling technologies, many engineering, medical, biology, chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems. To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.
文摘The needs for photo-realistic modelling of the complete details, and geometrically accurate 3D models are growing rapidly in several fields, especially in engineering and cultural heritage documentation. This paper explored the geometry of the Pictometry images (vertical and oblique) and the possibility of using this imagery in 3D modelling to produce photo-realistic and accurate models. In addition, merging terrestrial imagery with Pictometry imagery to get more ground level details has been investigated. All work has been carried out using the available software packages at the IESSG (Institute of Engineering Surveying and Space Geodesy) and using data provided by Blom Aerofilms Ltd. The results of the aerial triangulation of different Pictometry blocks showed that high quality image measurements have been achieved for all the image blocks. Extraction of 3D geometry for all buildings in the study area has been performed using both vertical Pictometry imagery and UltraCamD imagery. The successful combining of vertical and oblique Pictometry images provided an excellent opportunity to produce an efficient method of high quality urban model texturing. The integration of terrestrial images of building facades (whose texture needs enhancement) with the combined aerial imagery block has been successfully and automatically performed.
文摘Mountainous regions have disadvantages in economic development because of harsh physical and climatic conditions.However,winter tourism activities are one of the key components for supporting economic development in the highlands.Establishing a ski resort area supports direct and indirect employment in a region,and it stops immigration from mountainous regions to other places.This research aimed to assess the potential ski areas using a multi criteria evaluation technique in the Van region which is located in the eastern part of Türkiye.In this context,snow cover duration,sun effect,slope,slope length,elevation,population density,distance from main roads and lake visibility were used as input factors in the decision making process.Each factor was standardized using a fuzzy technique based on existing well-known ski centers in Türkiye.The weight of inputs was defined by applying a survey to the professional skiers.The most important factors were detected as transportation opportunities and snow covers whereas,the least important factors were elevation and population density.Additionally,lake visibility was very important to make a difference from other existing facilities in the region.Therefore,it was included as constraints and lake visible areas were extracted at the final stage of the research.Potential ski areas were mapped in three levels as professional,intermediate and beginner skiers.One of the suitable areas was selected as a sample projection and for the 3D simulation of the ski investment area.Potential costs and benefits were discussed.It was found that a ski tourism area investment can be amortized in 3 years in the region.
基金Research and Development of Wear-resistant Filament Monitoring System for Medicinal Core(Project No.:H20240260)Anqing Normal University Wanjiang Cultural Digital Protection and Intelligent Processing Key Laboratory Project,“Huangmei Opera Intelligent Digital Human Design and Application”+1 种基金Anqing Mayor Triangle Future Industry Research Institute Science and Technology Project,“Exploration of the Metaverse Design of Opera Culture and the Integration Model of Cultural Tourism”Anhui Provincial Social Science Innovation and Development Research Project,“Huangmei Opera Cultural Relics and Cultural Digital Native Protection and Utilization Innovation Research Project(Project No.:2023KY012)”。
文摘With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.
文摘The microbiota-gut-brain axis(MGBA)has emerged as a key prospect in the bidirectional communication between two major organ systems:the brain and the gut.Homeostasis between the two organ systems allows the body to function without disease,whereas dysbiosis has long-standing evidence of etiopathological conditions.The most common communication paths are the microbial release of metabolites,soluble neurotransmitters,and immune cells.However,each pathway is intertwined with a complex one.With the emergence of in vitro models and the popularity of three-dimensional(3D)cultures and Transwells,engineering has become easier for the scientific understanding of neurodegenerative diseases.This paper briefly retraces the possible communication pathways between the gut microbiome and the brain.It further elaborates on three major diseases:autism spectrum disorder,Parkinson’s disease,and Alzheimer’s disease,which are prevalent in children and the elderly.These diseases also decrease patients’quality of life.Hence,understanding them more deeply with respect to current advances in in vitro modeling is crucial for understanding the diseases.Remodeling of MGBA in the laboratory uses many molecular technologies and biomaterial advances.Spheroids and organoids provide a more realistic picture of the cell and tissue structure than monolayers.Combining them with the Transwell system offers the advantage of compartmentalizing the two systems(apical and basal)while allowing physical and chemical cues between them.Cutting-edge technologies,such as bioprinting and microfluidic chips,might be the future of in vitro modeling,as they provide dynamicity.
基金Project supported by the National Natural Science Foundation of China (Nos.12172326 and 11972319)the National Key Research and Development Program of China (No.2020YFA0711700)the Natural Science Foundation of Zhejiang Province of China (No.LR21A020002)。
文摘Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03070000 and 2022YFE03070003)National Natural Science Foundation of China(Nos.12375220 and 12075114)。
文摘According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金supported by the National Natural Science Foundation of China (42030810,42104115)。
文摘The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under the assumption that the rock was homogenous and isotropic at the mesoscopic scale.For the inherent mechanism,both models resulted from quasi-static flow in a slow P-wave diffusion mode,and the differences between them originated from saturated fluids and boundary conditions.On the other hand,for the characteristic frequencies of the models,the characteristic frequency of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it were misused and then compared to that of the layered White model.Both of them moved towards higher frequencies with increasing permeability and decreasing viscosity and diffusion length.The differences between them were due to the diffusion length.The diffusion length for the 1D poroelastic model was determined by the sample length,whereas that for the layered White model was determined by the length of the representative elementary volume(REV).Subsequently,a numerical example was presented to demonstrate the similarities and differences between the models.Finally,published experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.The prediction of the combined model was in good agreement with the experimental data,thereby validating the effectiveness of the 1D poroelastic model.Furthermore,the modified characteristic frequency in our study was much closer to the experimental data than the previous prediction,validating the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model.The investigation provided insight into the internal relationship between wave-induced fluid flow(WIFF)models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic modulus dispersion and attenuation caused by the WIFF at different scales.
文摘Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.
基金the National Natural Science Foundation of China(Nos.62272063,62072056 and 61902041)the Natural Science Foundation of Hunan Province(Nos.2022JJ30617 and 2020JJ2029)+4 种基金Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications(No.JZNY202102)the Traffic Science and Technology Project of Hunan Province,China(No.202042)Hunan Provincial Key Research and Development Program(No.2022GK2019)this work was funded by the Researchers Supporting Project Number(RSPD2023R681)King Saud University,Riyadh,Saudi Arabia.
文摘Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.
基金National Key Research and Development Program of China(No.2023YFB3907103).
文摘Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%.
文摘Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.
文摘Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
文摘Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.
基金National Natural Science of China(No.42201463)Guangxi Natural Science Foundation(No.2023GXNSFBA026350)+1 种基金Special Fund of Guangxi Science and Technology Base and Talent(Nos.Guike AD22035158,Guike AD23026167)Guangxi Young and Middle-aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0056).
文摘The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.
文摘To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face.
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.