期刊文献+
共找到400篇文章
< 1 2 20 >
每页显示 20 50 100
Depth-Guided Vision Transformer With Normalizing Flows for Monocular 3D Object Detection
1
作者 Cong Pan Junran Peng Zhaoxiang Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期673-689,共17页
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t... Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts. 展开更多
关键词 Monocular 3d object detection normalizing flows Swin Transformer
下载PDF
Algorithm and System of Scanning Color 3D Objects 被引量:1
2
作者 许智钦 孙长库 郑义忠 《Transactions of Tianjin University》 EI CAS 2002年第2期134-138,共5页
This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ... This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification. 展开更多
关键词 d measurement color 3d object laser scanning surface construction
下载PDF
General and robust voxel feature learning with Transformer for 3D object detection 被引量:1
3
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期51-60,共10页
The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.I... The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection. 展开更多
关键词 3d object detection self-attention networks voxel feature with Transformer(VFT) point cloud encoder-decoder
下载PDF
Exploring Local Regularities for 3D Object Recognition
4
作者 TIAN Huaiwen QIN Shengfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1104-1113,共10页
In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviat... In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness. 展开更多
关键词 stepwise 3d reconstruction localized regularities 3d object recognition polyhedral objects line drawing
下载PDF
MFF-Net: Multimodal Feature Fusion Network for 3D Object Detection
5
作者 Peicheng Shi Zhiqiang Liu +1 位作者 Heng Qi Aixi Yang 《Computers, Materials & Continua》 SCIE EI 2023年第6期5615-5637,共23页
In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection ... In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection will be affected by problems such as illumination changes,object occlusion,and object detection distance.To this purpose,we face these challenges by proposing a multimodal feature fusion network for 3D object detection(MFF-Net).In this research,this paper first uses the spatial transformation projection algorithm to map the image features into the feature space,so that the image features are in the same spatial dimension when fused with the point cloud features.Then,feature channel weighting is performed using an adaptive expression augmentation fusion network to enhance important network features,suppress useless features,and increase the directionality of the network to features.Finally,this paper increases the probability of false detection and missed detection in the non-maximum suppression algo-rithm by increasing the one-dimensional threshold.So far,this paper has constructed a complete 3D target detection network based on multimodal feature fusion.The experimental results show that the proposed achieves an average accuracy of 82.60%on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)dataset,outperforming previous state-of-the-art multimodal fusion networks.In Easy,Moderate,and hard evaluation indicators,the accuracy rate of this paper reaches 90.96%,81.46%,and 75.39%.This shows that the MFF-Net network has good performance in 3D object detection. 展开更多
关键词 3d object detection multimodal fusion neural network autonomous driving attention mechanism
下载PDF
Monocular 3D object detection with Pseudo-LiDAR confidence sampling and hierarchical geometric feature extraction in 6G network
6
作者 Jianlong Zhang Guangzu Fang +3 位作者 Bin Wang Xiaobo Zhou Qingqi Pei Chen Chen 《Digital Communications and Networks》 SCIE CSCD 2023年第4期827-835,共9页
The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpow... The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection. 展开更多
关键词 Monocular 3d object detection Pseudo-LidAR Confidence sampling Hierarchical geometric feature extraction
下载PDF
Adaptive multi-modal feature fusion for far and hard object detection
7
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期232-241,共10页
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro... In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels. 展开更多
关键词 3d object detection adaptive fusion multi-modal data fusion attention mechanism multi-neighborhood features
下载PDF
3D Object Detection with Attention:Shell-Based Modeling
8
作者 Xiaorui Zhang Ziquan Zhao +1 位作者 Wei Sun Qi Cui 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期537-550,共14页
LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previou... LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision. 展开更多
关键词 3d object detection autonomous driving point cloud shell-based modeling self-attention mechanism
下载PDF
Transforming Education with Photogrammetry:Creating Realistic 3D Objects for Augmented Reality Applications
9
作者 Kaviyaraj Ravichandran Uma Mohan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期185-208,共24页
Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed... Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector. 展开更多
关键词 Augmented reality education immersive learning 3d object creation photogrammetry and StructureFromMotion
下载PDF
MMDistill:Multi-Modal BEV Distillation Framework for Multi-View 3D Object Detection
10
作者 Tianzhe Jiao Yuming Chen +2 位作者 Zhe Zhang Chaopeng Guo Jie Song 《Computers, Materials & Continua》 SCIE EI 2024年第12期4307-4325,共19页
Multi-modal 3D object detection has achieved remarkable progress,but it is often limited in practical industrial production because of its high cost and low efficiency.The multi-view camera-based method provides a fea... Multi-modal 3D object detection has achieved remarkable progress,but it is often limited in practical industrial production because of its high cost and low efficiency.The multi-view camera-based method provides a feasible solution due to its low cost.However,camera data lacks geometric depth,and only using camera data to obtain high accuracy is challenging.This paper proposes a multi-modal Bird-Eye-View(BEV)distillation framework(MMDistill)to make a trade-off between them.MMDistill is a carefully crafted two-stage distillation framework based on teacher and student models for learning cross-modal knowledge and generating multi-modal features.It can improve the performance of unimodal detectors without introducing additional costs during inference.Specifically,our method can effectively solve the cross-gap caused by the heterogeneity between data.Furthermore,we further propose a Light Detection and Ranging(LiDAR)-guided geometric compensation module,which can assist the student model in obtaining effective geometric features and reduce the gap between different modalities.Our proposed method generally requires fewer computational resources and faster inference speed than traditional multi-modal models.This advancement enables multi-modal technology to be applied more widely in practical scenarios.Through experiments,we validate the effectiveness and superiority of MMDistill on the nuScenes dataset,achieving an improvement of 4.1%mean Average Precision(mAP)and 4.6%NuScenes Detection Score(NDS)over the baseline detector.In addition,we also present detailed ablation studies to validate our method. 展开更多
关键词 3d object detection multi-modal knowledge distillation deep learning remote sensing
下载PDF
Image attention transformer network for indoor 3D object detection
11
作者 REN KeYan YAN Tong +2 位作者 HU ZhaoXin HAN HongGui ZHANG YunLu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第7期2176-2190,共15页
Point clouds and RGB images are both critical data for 3D object detection. While recent multi-modal methods combine them directly and show remarkable performances, they ignore the distinct forms of these two types of... Point clouds and RGB images are both critical data for 3D object detection. While recent multi-modal methods combine them directly and show remarkable performances, they ignore the distinct forms of these two types of data. For mitigating the influence of this intrinsic difference on performance, we propose a novel but effective fusion model named LI-Attention model, which takes both RGB features and point cloud features into consideration and assigns a weight to each RGB feature by attention mechanism.Furthermore, based on the LI-Attention model, we propose a 3D object detection method called image attention transformer network(IAT-Net) specialized for indoor RGB-D scene. Compared with previous work on multi-modal detection, IAT-Net fuses elaborate RGB features from 2D detection results with point cloud features in attention mechanism, meanwhile generates and refines 3D detection results with transformer model. Extensive experiments demonstrate that our approach outperforms stateof-the-art performance on two widely used benchmarks of indoor 3D object detection, SUN RGB-D and NYU Depth V2, while ablation studies have been provided to analyze the effect of each module. And the source code for the proposed IAT-Net is publicly available at https://github.com/wisper181/IAT-Net. 展开更多
关键词 3d object detection TRANSFORMER attention mechanism
原文传递
Rail-Pillar Net:A 3D Detection Network for Railway Foreign Object Based on LiDAR
12
作者 Fan Li Shuyao Zhang +2 位作者 Jie Yang Zhicheng Feng Zhichao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第9期3819-3833,共15页
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w... Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy. 展开更多
关键词 Railway foreign object light detection and ranging(LidAR) 3d object detection PointPillars parallel attention mechanism transfer learning
下载PDF
Visualizing perceived spatial data quality of 3D objects within virtual globes 被引量:1
13
作者 Krista Jones Rodolphe Devillers +1 位作者 Yvan Bedard Olaf Schroth 《International Journal of Digital Earth》 SCIE EI 2014年第10期771-788,共18页
Virtual globes(VGs)allow Internet users to view geographic data of heterogeneous quality created by other users.This article presents a new approach for collecting and visualizing information about the perceived quali... Virtual globes(VGs)allow Internet users to view geographic data of heterogeneous quality created by other users.This article presents a new approach for collecting and visualizing information about the perceived quality of 3D data in VGs.It aims atimproving users’awareness of the qualityof 3D objects.Instead of relying onthe existing metadata or on formal accuracy assessments that are often impossible in practice,we propose a crowd-sourced quality recommender system based on the five-star visualization method successful in other types of Web applications.Four alternative five-star visualizations were implemented in a Google Earth-based prototype and tested through a formal user evaluation.These tests helped identifying the most effective method for a 3D environment.Results indicate that while most websites use a visualization approach that shows a‘number of stars’,this method was the least preferred by participants.Instead,participants ranked the‘number within a star’method highest as it allowed reducing the visual clutter in urban settings,suggesting that 3D environments such as VGs require different designapproachesthan2Dornon-geographicapplications.Resultsalsoconfirmed that expert and non-expert users in geographic data share similar preferences for the most and least preferred visualization methods. 展开更多
关键词 virtual globes spatial data quality UNCERTAINTY quality recommender system five-star 3d objects
原文传递
RGB Image‑ and Lidar‑Based 3D Object Detection Under Multiple Lighting Scenarios 被引量:1
14
作者 Wentao Chen Wei Tian +1 位作者 Xiang Xie Wilhelm Stork 《Automotive Innovation》 EI CSCD 2022年第3期251-259,共9页
In recent years,camera-and lidar-based 3D object detection has achieved great progress.However,the related researches mainly focus on normal illumination conditions;the performance of their 3D detection algorithms wil... In recent years,camera-and lidar-based 3D object detection has achieved great progress.However,the related researches mainly focus on normal illumination conditions;the performance of their 3D detection algorithms will decrease under low lighting scenarios such as in the night.This work attempts to improve the fusion strategies on 3D vehicle detection accuracy in multiple lighting conditions.First,distance and uncertainty information is incorporated to guide the“painting”of semantic information onto point cloud during the data preprocessing.Moreover,a multitask framework is designed,which incorpo-rates uncertainty learning to improve detection accuracy under low-illumination scenarios.In the validation on KITTI and Dark-KITTI benchmark,the proposed method increases the vehicle detection accuracy on the KITTI benchmark by 1.35%and the generality of the model is validated on the proposed Dark-KITTI dataset,with a gain of 0.64%for vehicle detection. 展开更多
关键词 3d object detection Multi-sensor fusion Uncertainty estimation Semantic segmentation PointPainting
原文传递
Efficient View-Based 3-D Object Retrieval via Hypergraph Learning 被引量:1
15
作者 Yue Gao Qionghai Dai 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第3期250-256,共7页
View-based 3-D object retrieval has become an emerging topic in recent years,especially with the fast development of visual content acquisition devices,such as mobile phones with cameras.Extensive research efforts hav... View-based 3-D object retrieval has become an emerging topic in recent years,especially with the fast development of visual content acquisition devices,such as mobile phones with cameras.Extensive research efforts have been dedicated to this task,while it is still difficult to measure the relevance between two objects with multiple views.In recent years,learning-based methods have been investigated in view-based 3-D object retrieval,such as graph-based learning.It is noted that the graph-based methods suffer from the high computational cost from the graph construction and the corresponding learning process.In this paper,we introduce a general framework to accelerate the learning-based view-based 3-D object matching in large scale data.Given a query object Q and one object O from a 3-D dataset D,the first step is to extract a small set of candidate relevant 3-D objects for object O.Then multiple hypergraphs can be constructed based on this small set of 3-D objects and the learning on the fused hypergraph is conducted to generate the relevance between Q and O,which can be further used in the retrieval procedure.Experiments demonstrate the effectiveness of the proposed framework. 展开更多
关键词 view-based 3-d object retrieval hypergraph learning
原文传递
RGB-D Hand-Held Object Recognition Based on Heterogeneous Feature Fusion 被引量:6
16
作者 吕雄 蒋树强 Luis Herranz 王双 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第2期340-352,共13页
Object recognition has many applications in human-machine interaction and multimedia retrieval. However, due to large intra-class variability and inter-class similarity, accurate recognition relying only on RGB data i... Object recognition has many applications in human-machine interaction and multimedia retrieval. However, due to large intra-class variability and inter-class similarity, accurate recognition relying only on RGB data is still a big challenge. Recently, with the emergence of inexpensive RGB-D devices, this challenge can be better addressed by leveraging additional depth information. A very special yet important case of object recognition is hand-held object recognition, as manipulating objects with hands is common and intuitive in human-human and human-machine interactions. In this paper, we study this problem and introduce an effective framework to address it. This framework first detects and segments the hand-held object by exploiting skeleton information combined with depth information. In the object recognition stage, this work exploits heterogeneous features extracted from different modalities and fuses them to improve the recognition accuracy. In particular, we incorporate handcrafted and deep learned features and study several multi-step fusion variants. Experimental evaluations validate the effectiveness of the proposed method. 展开更多
关键词 RGB-d hand-held object recognition heterogeneous features fusion
原文传递
PointGAT: Graph attention networks for 3D object detection
17
作者 Haoran Zhou Wei Wang +1 位作者 Gang Liu Qingguo Zhou 《Intelligent and Converged Networks》 EI 2022年第2期204-216,共13页
3D object detection is a critical technology in many applications,and among the various detection methods,pointcloud-based methods have been the most popular research topic in recent years.Since Graph Neural Network(G... 3D object detection is a critical technology in many applications,and among the various detection methods,pointcloud-based methods have been the most popular research topic in recent years.Since Graph Neural Network(GNN)is considered to be effective in dealing with pointclouds,in this work,we combined it with the attention mechanism and proposed a 3D object detection method named PointGAT.Our proposed PointGAT outperforms previous approaches on the KITTI test dataset.Experiments in real campus scenarios also demonstrate the potential of our method for further applications. 展开更多
关键词 3d object detection pointcloud graph neural network attention mechanism
原文传递
LWD-3D:Lightweight Detector Based on Self-Attention for 3D Object Detection
18
作者 Shuo Yang Huimin Lu +2 位作者 Tohru Kamiya Yoshihisa Nakatoh Seiichi Serikawa 《CAAI Artificial Intelligence Research》 2022年第2期137-143,共7页
Lightweight modules play a key role in 3D object detection tasks for autonomous driving,which are necessary for the application of 3D object detectors.At present,research still focuses on constructing complex models a... Lightweight modules play a key role in 3D object detection tasks for autonomous driving,which are necessary for the application of 3D object detectors.At present,research still focuses on constructing complex models and calculations to improve the detection precision at the expense of the running rate.However,building a lightweight model to learn the global features from point cloud data for 3D object detection is a significant problem.In this paper,we focus on combining convolutional neural networks with selfattention-based vision transformers to realize lightweight and high-speed computing for 3D object detection.We propose lightweight detection 3D(LWD-3D),which is a point cloud conversion and lightweight vision transformer for autonomous driving.LWD-3D utilizes a one-shot regression framework in 2D space and generates a 3D object bounding box from point cloud data,which provides a new feature representation method based on a vision transformer for 3D detection applications.The results of experiment on the KITTI 3D dataset show that LWD-3D achieves real-time detection(time per image<20 ms).LWD-3D obtains a mean average precision(mAP)75%higher than that of another 3D real-time detector with half the number of parameters.Our research extends the application of visual transformers to 3D object detection tasks. 展开更多
关键词 3d object detection point clouds vision transformer one-shot regression real-time
原文传递
Augmented Reality Based on Object Recognition for Piping System Maintenance
19
作者 Ana Regina Mizrahy Cuperschmid Mariana Higashi Sakamoto 《Journal of Architectural Environment & Structural Engineering Research》 2021年第2期38-44,共7页
Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)ob... Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)object tracking method.Through spatial mapping,the object of interest,a pipe trap underneath a sink,is tracked and mixed onto the AR visualization.From that,the maintenance steps are transformed into visible and animated instructions.Although some tracking issues related to the component parts were observed,the designed AR application results demonstrated the potential to improve facility management tasks. 展开更多
关键词 Augmented reality 3d object tracking Maintenance PIPE Facility management
下载PDF
ARM3D:Attention-based relation module for indoor 3D object detection 被引量:4
20
作者 Yuqing Lan Yao Duan +4 位作者 Chenyi Liu Chenyang Zhu Yueshan Xiong Hui Huang Kai Xu 《Computational Visual Media》 SCIE EI CSCD 2022年第3期395-414,共20页
Relation contexts have been proved to be useful for many challenging vision tasks.In the field of3D object detection,previous methods have been taking the advantage of context encoding,graph embedding,or explicit rela... Relation contexts have been proved to be useful for many challenging vision tasks.In the field of3D object detection,previous methods have been taking the advantage of context encoding,graph embedding,or explicit relation reasoning to extract relation contexts.However,there exist inevitably redundant relation contexts due to noisy or low-quality proposals.In fact,invalid relation contexts usually indicate underlying scene misunderstanding and ambiguity,which may,on the contrary,reduce the performance in complex scenes.Inspired by recent attention mechanism like Transformer,we propose a novel 3D attention-based relation module(ARM3D).It encompasses objectaware relation reasoning to extract pair-wise relation contexts among qualified proposals and an attention module to distribute attention weights towards different relation contexts.In this way,ARM3D can take full advantage of the useful relation contexts and filter those less relevant or even confusing contexts,which mitigates the ambiguity in detection.We have evaluated the effectiveness of ARM3D by plugging it into several state-of-the-art 3D object detectors and showing more accurate and robust detection results.Extensive experiments show the capability and generalization of ARM3D on 3D object detection.Our source code is available at https://github.com/lanlan96/ARM3D. 展开更多
关键词 attention mechanism scene understanding relational reasoning 3d indoor object detection
原文传递
上一页 1 2 20 下一页 到第
使用帮助 返回顶部