Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a...Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.展开更多
To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of ...To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.展开更多
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transform...In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transformed coordinate system is derived. The wave field is modeled using the finite-difference method in the transformed coordinate system. The model calculation shows that this method is able to model the seismic wave field with fluctuating surface topography and achieve good results. Finally, the energy curves of the direct and reflected waves are analyzed to show that surface topography has a great influence on the seismic wave's dynamic properties.展开更多
Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elim...Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elimination cannot resolve the parallel computation of huge data. Therefore, we use the Gaussian elimination with static pivoting (GESP) method for sparse matrix decomposition and multi-source finite-difference modeling. The GESP method does not only improve the computational efficiency but also benefit the distributed parallel computation of matrix decomposition within a single frequency point. We test the proposed method using the classic Marmousi model. Both the single-frequency wave field and time domain seismic section show that the proposed method improves the simulation accuracy and computational efficiency and saves and makes full use of memory. This method can lay the basis for waveform inversion.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
Edge reflections are inevitable in numerical modeling of seismic wavefields, and they are usually attenuated by absorbing boundary conditions. However, the commonly used perfectly matched layer (PML) boundary condit...Edge reflections are inevitable in numerical modeling of seismic wavefields, and they are usually attenuated by absorbing boundary conditions. However, the commonly used perfectly matched layer (PML) boundary condition requires special treatment for the absorbing zone, and in three-dimensional (3D) modeling, it has to split each variable into three corresponding variables, which increases the computing time and memory storage. In contrast, the hybrid absorbing boundary condition (HABC) has the advantages such as ease of implementation, less computation time, and near-perfect absorption; it is thus able to enhance the computational efficiency of 3D elastic wave modeling. In this study, a HABC is developed from two-dimensional (2D) modeling into 3D modeling based on the I st Higdon one way wave equations, and a HABC is proposed that is suitable for a 3D elastic wave numerical simulation. Numerical simulation results for a homogenous model and a complex model indicate that the proposed HABC method is more effective and has better absorption than the traditional PML method.展开更多
Fracture and cavern hydrocarbon reservoirs in carbonates are an important pool type worldwide. The karst cavern reservoirs are easiest to identify on seismic reflection data. The prediction, exploration, and developme...Fracture and cavern hydrocarbon reservoirs in carbonates are an important pool type worldwide. The karst cavern reservoirs are easiest to identify on seismic reflection data. The prediction, exploration, and development of this type of reservoir require theoretical research on seismic wave fields reflected from complex inhomogeneous media. We compute synthetic seismic sections for fluidfilled cavern reservoirs of various heights and widths using random media models and inhomogeneous media elastic wave equations. Results indicate that even caverns significantly smaller than 1/ 4 wavelength are detectible on conventional band-width seismic sections as diffractions migrated into bead-type events. Diffraction amplitude is a function of cavern height and width. We introduce a width-amplitude factor which can be used to calculate the diffraction amplitude of a cavern with a limited width from the diffraction amplitude computed for an infinitely wide cavern.展开更多
Ground-penetrating radar(GPR)is a highly efficient,fast and non-destructive exploration method for shallow surfaces.High-precision numerical simulation method is employed to improve the interpretation precision of det...Ground-penetrating radar(GPR)is a highly efficient,fast and non-destructive exploration method for shallow surfaces.High-precision numerical simulation method is employed to improve the interpretation precision of detection.Second-generation wavelet finite element is introduced into the forward modeling of the GPR.As the finite element basis function,the second-generation wavelet scaling function constructed by the scheme is characterized as having multiple scales and resolutions.The function can change the analytical scale arbitrarily according to actual needs.We can adopt a small analysis scale at a large gradient to improve the precision of analysis while adopting a large analytical scale at a small gradient to improve the efficiency of analysis.This approach is beneficial to capture the local mutation characteristics of the solution and improve the resolution without changing mesh subdivision to realize the efficient solution of the forward GPR problem.The algorithm is applied to the numerical simulation of line current radiation source and tunnel non-dense lining model with analytical solutions.Result show that the solution results of the secondgeneration wavelet finite element are in agreement with the analytical solutions and the conventional finite element solutions,thereby verifying the accuracy of the second-generation wavelet finite element algorithm.Furthermore,the second-generation wavelet finite element algorithm can change the analysis scale arbitrarily according to the actual problem without subdividing grids again.The adaptive algorithm is superior to traditional scheme in grid refinement and basis function order increase,which makes this algorithm suitable for solving complex GPR forward-modeling problems with large gradient and singularity.展开更多
In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical s...In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.展开更多
The perfectly matched layer(PML)boundary condition has been proven to be effective for attenuating reflections from model boundaries during wavefield simulation.As such,it has been widely used in time-domain finite-di...The perfectly matched layer(PML)boundary condition has been proven to be effective for attenuating reflections from model boundaries during wavefield simulation.As such,it has been widely used in time-domain finite-difference wavefield simulations.The conventional PML has poor performance for near grazing incident waves and low-frequency reflections.To overcome these limitations,a more complex frequency-shifted stretch(CSF)function is introduced,which is known as the CFSPML boundary condition and can be implemented in the time domain by a recursive convolution technique(CPML).When implementing the PML technique to second-order wave equations,all the existing methods involve adding auxiliary terms and rewriting the wave equations into new second-order partial differential equations that can be simulated by the finite-difference scheme,which may affect the efficiency of numerical simulation.In this paper,we propose a relatively simple and efficient approach to implement CPML for the second-order equation system,which solves the original wave equations numerically in the stretched coordinate.The spatial derivatives in the stretched coordinate are computed by adding a correction term to the regular derivatives.Once the first-order spatial derivatives are computed,we computed the second-order spatial derivatives in a similar way;therefore,we refer to the method as two-step CPML(TS-CPML).We apply the method to the second-order acoustic wave equation and a coupled second-order pseudo-acoustic TTI wave equation.Our simulations indicate that amplitudes of reflected waves are only about half of those computed with the traditional CPML method,suggesting that the proposed approach has computational advantages and therefore can be widely used for forwarding modeling and seismic imaging.展开更多
A 3-D time-domain numerical coupled model for nonlinear waves acting on a ship in a harbor has been developed in the present study.The whole domain is divided into the inner domain and the outer domain.The inner domai...A 3-D time-domain numerical coupled model for nonlinear waves acting on a ship in a harbor has been developed in the present study.The whole domain is divided into the inner domain and the outer domain.The inner domain is the area around the ship,where the flow is expressed by the Laplace equation and numerically solved by the finite element method.The other area is the outer domain,where the flow is described by the higher-order Boussinesq equations and numerically solved by the finite difference method.The matching conditions on the interfaces between the inner domain and the outer domain,the procedure of coupled solution,the length of common domain and the mesh generation in the inner domain are discussed in detail.The other coupled model with the flow in the inner domain governed by the simplified linear Euler equations and relevant physical experiment are adopted to validate the present coupled model,and it is shown that the numerical results of the present model agree with the experimental data,so the present model can be used for the study on the effect of nonlinear waves acting on a fixed ship in a large area and provide a reference for the time-domain simulation of nonlinear wave forces on an arbitrary object in a large harbor and the 3-D district computation in the future.展开更多
基金supported by the National Natural Science Foundation of China(No.41474110)Shell Ph.D. Scholarship to support excellence in geophysical research
文摘Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.
文摘To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金This research is sponsored by the Scientific Research Project of the China Geological Survey "Basic Theory, Special Collection and Special Process Method Research on Metal Mineral Seismic Exploration" (Project Number: 2000201 0002146).
文摘In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transformed coordinate system is derived. The wave field is modeled using the finite-difference method in the transformed coordinate system. The model calculation shows that this method is able to model the seismic wave field with fluctuating surface topography and achieve good results. Finally, the energy curves of the direct and reflected waves are analyzed to show that surface topography has a great influence on the seismic wave's dynamic properties.
基金supported by China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2008ZX05004-006)
文摘Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elimination cannot resolve the parallel computation of huge data. Therefore, we use the Gaussian elimination with static pivoting (GESP) method for sparse matrix decomposition and multi-source finite-difference modeling. The GESP method does not only improve the computational efficiency but also benefit the distributed parallel computation of matrix decomposition within a single frequency point. We test the proposed method using the classic Marmousi model. Both the single-frequency wave field and time domain seismic section show that the proposed method improves the simulation accuracy and computational efficiency and saves and makes full use of memory. This method can lay the basis for waveform inversion.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金supported by the National Natural Science Foundation of China(No.41474110)
文摘Edge reflections are inevitable in numerical modeling of seismic wavefields, and they are usually attenuated by absorbing boundary conditions. However, the commonly used perfectly matched layer (PML) boundary condition requires special treatment for the absorbing zone, and in three-dimensional (3D) modeling, it has to split each variable into three corresponding variables, which increases the computing time and memory storage. In contrast, the hybrid absorbing boundary condition (HABC) has the advantages such as ease of implementation, less computation time, and near-perfect absorption; it is thus able to enhance the computational efficiency of 3D elastic wave modeling. In this study, a HABC is developed from two-dimensional (2D) modeling into 3D modeling based on the I st Higdon one way wave equations, and a HABC is proposed that is suitable for a 3D elastic wave numerical simulation. Numerical simulation results for a homogenous model and a complex model indicate that the proposed HABC method is more effective and has better absorption than the traditional PML method.
基金This research project is sponsored by Nation’s Natural Science Found of China (No. 40174034 and 40274038) as well as theOpening Found Projects of the CNPC geophysical exploration key laboratory (No. GPKL0207).
文摘Fracture and cavern hydrocarbon reservoirs in carbonates are an important pool type worldwide. The karst cavern reservoirs are easiest to identify on seismic reflection data. The prediction, exploration, and development of this type of reservoir require theoretical research on seismic wave fields reflected from complex inhomogeneous media. We compute synthetic seismic sections for fluidfilled cavern reservoirs of various heights and widths using random media models and inhomogeneous media elastic wave equations. Results indicate that even caverns significantly smaller than 1/ 4 wavelength are detectible on conventional band-width seismic sections as diffractions migrated into bead-type events. Diffraction amplitude is a function of cavern height and width. We introduce a width-amplitude factor which can be used to calculate the diffraction amplitude of a cavern with a limited width from the diffraction amplitude computed for an infinitely wide cavern.
基金supported by the National Natural Science Foundation of China(Nos.41574116 and 41774132)Hunan Provincial Innovation Foundation for Postgraduate(Grant Nos.CX2017B052)the Fundamental Research Funds for the Central Universities of Central South University(Nos.2018zzts693)。
文摘Ground-penetrating radar(GPR)is a highly efficient,fast and non-destructive exploration method for shallow surfaces.High-precision numerical simulation method is employed to improve the interpretation precision of detection.Second-generation wavelet finite element is introduced into the forward modeling of the GPR.As the finite element basis function,the second-generation wavelet scaling function constructed by the scheme is characterized as having multiple scales and resolutions.The function can change the analytical scale arbitrarily according to actual needs.We can adopt a small analysis scale at a large gradient to improve the precision of analysis while adopting a large analytical scale at a small gradient to improve the efficiency of analysis.This approach is beneficial to capture the local mutation characteristics of the solution and improve the resolution without changing mesh subdivision to realize the efficient solution of the forward GPR problem.The algorithm is applied to the numerical simulation of line current radiation source and tunnel non-dense lining model with analytical solutions.Result show that the solution results of the secondgeneration wavelet finite element are in agreement with the analytical solutions and the conventional finite element solutions,thereby verifying the accuracy of the second-generation wavelet finite element algorithm.Furthermore,the second-generation wavelet finite element algorithm can change the analysis scale arbitrarily according to the actual problem without subdividing grids again.The adaptive algorithm is superior to traditional scheme in grid refinement and basis function order increase,which makes this algorithm suitable for solving complex GPR forward-modeling problems with large gradient and singularity.
基金This work was supported by Major State Basic Research Program of Peoples's Republic of China(No.G1999032800)Major Project(No.49894190)the National Natural Science Foundation of China(Grant No.40004003).All numerical experiments were completed on the PC-cluster in the State Key Lab of Scientific/Engineering Computing.
文摘In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.
基金supported by the National Natural Science Foundation of China(Grant No.41630209)。
文摘The perfectly matched layer(PML)boundary condition has been proven to be effective for attenuating reflections from model boundaries during wavefield simulation.As such,it has been widely used in time-domain finite-difference wavefield simulations.The conventional PML has poor performance for near grazing incident waves and low-frequency reflections.To overcome these limitations,a more complex frequency-shifted stretch(CSF)function is introduced,which is known as the CFSPML boundary condition and can be implemented in the time domain by a recursive convolution technique(CPML).When implementing the PML technique to second-order wave equations,all the existing methods involve adding auxiliary terms and rewriting the wave equations into new second-order partial differential equations that can be simulated by the finite-difference scheme,which may affect the efficiency of numerical simulation.In this paper,we propose a relatively simple and efficient approach to implement CPML for the second-order equation system,which solves the original wave equations numerically in the stretched coordinate.The spatial derivatives in the stretched coordinate are computed by adding a correction term to the regular derivatives.Once the first-order spatial derivatives are computed,we computed the second-order spatial derivatives in a similar way;therefore,we refer to the method as two-step CPML(TS-CPML).We apply the method to the second-order acoustic wave equation and a coupled second-order pseudo-acoustic TTI wave equation.Our simulations indicate that amplitudes of reflected waves are only about half of those computed with the traditional CPML method,suggesting that the proposed approach has computational advantages and therefore can be widely used for forwarding modeling and seismic imaging.
基金the National Natural Science Foundation of China(Grant Nos.59979002,50809008)the Hong Kong Research Grants Council(Grant No.HKU7171/06E)+2 种基金the China Postdoctoral Science Foundation(Grant No.20060400972)the Project of the Educational Department of Liaoning Province(Grant No.2005058)the Dalian Science and Technology Foundation(Grant No.2007J23JH027)
文摘A 3-D time-domain numerical coupled model for nonlinear waves acting on a ship in a harbor has been developed in the present study.The whole domain is divided into the inner domain and the outer domain.The inner domain is the area around the ship,where the flow is expressed by the Laplace equation and numerically solved by the finite element method.The other area is the outer domain,where the flow is described by the higher-order Boussinesq equations and numerically solved by the finite difference method.The matching conditions on the interfaces between the inner domain and the outer domain,the procedure of coupled solution,the length of common domain and the mesh generation in the inner domain are discussed in detail.The other coupled model with the flow in the inner domain governed by the simplified linear Euler equations and relevant physical experiment are adopted to validate the present coupled model,and it is shown that the numerical results of the present model agree with the experimental data,so the present model can be used for the study on the effect of nonlinear waves acting on a fixed ship in a large area and provide a reference for the time-domain simulation of nonlinear wave forces on an arbitrary object in a large harbor and the 3-D district computation in the future.