The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-...The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-band is realized by combining with the local oscillator and the power control circuit to complete functions such as amplification, filtering and gain. In order to achieve the performance optimization and a high level of integration of the Ku-band monolithic microwave integrated circuits(MMIC) operating chip, the 3 D vertical interconnection micro-assembly technology is used. By stacking solder balls on the printed circuit board(PCB), the technology decreases the volume of the original transceiver to a miniaturized module. The module has a good electromagnetic compatibility through special structure designs. This module has the characteristics of miniaturization, low power consumption and high density, which is suitable for popularization in practical application.展开更多
Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designe...Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t...C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.展开更多
临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient c...临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient channel attention,ECA)的D-Linknet模型。首先,利用Res2-net代替基础模型中的残差模块Res-net以提升每个网络层的感受野;其次,在Res2-net中添加一种结合压缩激励(squeeze and excitation,SE)和门通道(gated channel transformation,GCT)的注意力机制模块,改善处于复杂背景下的血管分割效果和效率;在网络的解码层加入ECA确保模型计算的性能,避免因降维导致的精度下降;最后,融合改进的模型输出图与掩膜图细化分割结果。在公开数据集DRIVE、STARE上进行分割实验,模型准确度(accuracy,AC)分别为97.11%、96.32%,灵敏度(sensitivity,SE)为84.55%、83.92%,曲线下方范围的面积(area under curve,AUC)为0.9873和0.9766,分割效果优于其他模型。实验证明了算法的可行性,为后续研究提供科学依据。展开更多
Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO...Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO3-/CO3 2-or Ca 2+ /HCO3-) at 50℃ were reviewed.Conversion treatment for the Mg,Al-hydrotalcite conversion coating was as follows.Mg alloy was treated first in acidic HCO3-/CO3 2-aqueous for precursor layer formation on Mg alloy surface and then in alkaline HCO3-/CO3 2-aqueous to form a crystallized Mg,Al-hydrotalcite coating.Duration of an Mg,Al-hydrotalcite coating on Mg alloy surface was reduced from 12 h to 4 h by the conversion treatment.On the other hand,for reducing the formation time of CaCO3 coating on Mg alloy,the aqueous Ca 2+ /HCO3-with a saturated Ca 2+ content was employed for developing a CaCO3 coating on Mg alloy.A dense CaCO3 coating could yield on Mg alloy surface in 2 h.Corrosion rate(corrosion current density,Jcorr) of the Mg,Al-hydrotalcite-coated sample and CaCO3-coated AZ91D sample was 7-10μA/cm 2,roughly two orders less than the Jcorr of the as-diecast sample(about 200μA/cm 2) . No corrosion spot on the Mg,Al-hydrotalcite-coated sample and CaCO3-coated sample was observed after 72 h and 192 h salt spray test,respectively.展开更多
Objective:Glioblastoma(GBM)is the most prevalent and aggressive adult primary cancer in the central nervous system.Therapeutic approaches for GBM treatment are under intense investigation,including the use of emerging...Objective:Glioblastoma(GBM)is the most prevalent and aggressive adult primary cancer in the central nervous system.Therapeutic approaches for GBM treatment are under intense investigation,including the use of emerging immunotherapies.Here,we propose an alternative approach to treat GBM through reprogramming proliferative GBM cells into non-proliferative neurons.Methods:Retroviruses were used to target highly proliferative human GBM cells through overexpression of neural transcription factors.Immunostaining,electrophysiological recording,and bulk RNA-seq were performed to investigate the mechanisms underlying the neuronal conversion of human GBM cells.An in vivo intracranial xenograft mouse model was used to examine the neuronal conversion of human GBM cells.Results:We report efficient neuronal conversion from human GBM cells by overexpressing single neural transcription factor Neurogenic differentiation 1(Neuro D1),Neurogenin-2(Neurog2),or Achaete-scute homolog 1(Ascl1).Subtype characterization showed that the majority of Neurog2-and Neuro D1-converted neurons were glutamatergic,while Ascl1 favored GABAergic neuron generation.The GBM cell-converted neurons not only showed pan-neuronal markers but also exhibited neuron-specific electrophysiological activities.Transcriptome analyses revealed that neuronal genes were activated in glioma cells after overexpression of neural transcription factors,and different signaling pathways were activated by different neural transcription factors.Importantly,the neuronal conversion of GBM cells was accompanied by significant inhibition of GBM cell proliferation in both in vitro and in vivo models.Conclusions:These results suggest that GBM cells can be reprogrammed into different subtypes of neurons,leading to a potential alternative approach to treat brain tumors using in vivo cell conversion technology.展开更多
Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integr...Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.展开更多
The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to ...The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.展开更多
The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-band...The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-bandwidth performance was achieved by optimizing the analog circuits,and a sufficient effective number of bits(ENOB)performance guaranteed using the perfect reconstruction algorithm for mismatch error correction.The proposed system was verified by tests,and the results indicated that a-3 dB bandwidth of 6 GHz and the ENOB performance of 8.7 bits at 1 GHz and 7.6 bits at6 GHz were successfully achieved.展开更多
A new method creating depth information for 2D/3D conversion was proposed. The distance between objects is determined by the distances between objects and light source position which is estimated by the analysis of th...A new method creating depth information for 2D/3D conversion was proposed. The distance between objects is determined by the distances between objects and light source position which is estimated by the analysis of the image. The estimated lighting value is used to normalize the image. A threshold value is determined by some weighted operation between the original image and the normalized image. By applying the threshold value to the original image, background area is removed. Depth information of interested area is calculated from the lighting changes. The final 3D images converted with the proposed method are used to verify its effectiveness.展开更多
Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inheren...Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.展开更多
2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor re...2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor required for conversion. In this paper, we introduce a distributed 2D-to-3D video conversion system that includes a 2D-to-3D video conversion module, architecture of the parallel computation on the cloud, and 3D video coding in the system. The system enables cooperation among multiple users in the simultaneous completion of their conversion tasks so that the conversion efficiency is greatly promoted. In the experiments, we evaluate the system based on criteria related to both time consumption and video coding performance.展开更多
The targeted construction of donor-acceptor(D-A)materials featuring efficient photothermal(PT)conversion properties has been an attractive but challenging goal.Herein,a new series of coordination polymers(CPs)featurin...The targeted construction of donor-acceptor(D-A)materials featuring efficient photothermal(PT)conversion properties has been an attractive but challenging goal.Herein,a new series of coordination polymers(CPs)featuring different PT performances were constructed with flexible linker 1,1′-Ferrocenedicarboxylic acid(FCA)and 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine(TPT)as acceptor and donor molecules including coronene and tetrathiafulvalene(TTF).Based on the flexible configurations of FCA ligand and the directing of donor dependent D-A interactions,the structures of TF-1 to TF-3 featuring distinctive dimension were obtained based on Cd(Ⅱ)ions for investigating the PT property in configurational perspectives.A systematic investigation of the PT properties of the CPs was performed.Notably,TF-3 exhibits the finest PT conversion effect under the irradiation of560 nm laser,while TF-2 shows optimal PT conversion under 808 nm laser irradiation required for biological PT therapy,illustrating the correlation between the structural and component features of the CPs and their PT performances.Furthermore,Zn(Ⅱ)as bio-friendly ion was utilized to construct hypotoxic TF-4 that reveals similar structure to that of TF-2 for potential application.Polydimethylsiloxane(PDMS)patches doped with TF-4 exhibits considerable NIR PT conversion effect under808 nm,represented by the nearly 80℃temperature increased in 120 s for TF-4@PDMS patch(1.2 wt%)under 0.9 W cm^(-2)irradiation,the results of which herein indicate the potential of D-A CPs as versatile platform for the modulation of PT materials.展开更多
Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance...Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth.展开更多
文摘The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-band is realized by combining with the local oscillator and the power control circuit to complete functions such as amplification, filtering and gain. In order to achieve the performance optimization and a high level of integration of the Ku-band monolithic microwave integrated circuits(MMIC) operating chip, the 3 D vertical interconnection micro-assembly technology is used. By stacking solder balls on the printed circuit board(PCB), the technology decreases the volume of the original transceiver to a miniaturized module. The module has a good electromagnetic compatibility through special structure designs. This module has the characteristics of miniaturization, low power consumption and high density, which is suitable for popularization in practical application.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21103194,51506205,and 21673243)the Science and Technology Planning Project of Guangdong Province,China(Grant Nos.2014A010106018 and 2013A011401011)+3 种基金the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province,China(Grant No.2014B050505015)the Special Support Program of Guangdong Province,China(Grant No.2014TQ01N610)the Director Innovation Foundation of Guangzhou Institute of Energy Conversion,China(Grant No.y307p81001)the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province,China(Grant No.2014B090904071)
文摘Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
文摘C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.
文摘临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient channel attention,ECA)的D-Linknet模型。首先,利用Res2-net代替基础模型中的残差模块Res-net以提升每个网络层的感受野;其次,在Res2-net中添加一种结合压缩激励(squeeze and excitation,SE)和门通道(gated channel transformation,GCT)的注意力机制模块,改善处于复杂背景下的血管分割效果和效率;在网络的解码层加入ECA确保模型计算的性能,避免因降维导致的精度下降;最后,融合改进的模型输出图与掩膜图细化分割结果。在公开数据集DRIVE、STARE上进行分割实验,模型准确度(accuracy,AC)分别为97.11%、96.32%,灵敏度(sensitivity,SE)为84.55%、83.92%,曲线下方范围的面积(area under curve,AUC)为0.9873和0.9766,分割效果优于其他模型。实验证明了算法的可行性,为后续研究提供科学依据。
基金Project supported by the Ministry of Education Under the ATU Plan
文摘Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO3-/CO3 2-or Ca 2+ /HCO3-) at 50℃ were reviewed.Conversion treatment for the Mg,Al-hydrotalcite conversion coating was as follows.Mg alloy was treated first in acidic HCO3-/CO3 2-aqueous for precursor layer formation on Mg alloy surface and then in alkaline HCO3-/CO3 2-aqueous to form a crystallized Mg,Al-hydrotalcite coating.Duration of an Mg,Al-hydrotalcite coating on Mg alloy surface was reduced from 12 h to 4 h by the conversion treatment.On the other hand,for reducing the formation time of CaCO3 coating on Mg alloy,the aqueous Ca 2+ /HCO3-with a saturated Ca 2+ content was employed for developing a CaCO3 coating on Mg alloy.A dense CaCO3 coating could yield on Mg alloy surface in 2 h.Corrosion rate(corrosion current density,Jcorr) of the Mg,Al-hydrotalcite-coated sample and CaCO3-coated AZ91D sample was 7-10μA/cm 2,roughly two orders less than the Jcorr of the as-diecast sample(about 200μA/cm 2) . No corrosion spot on the Mg,Al-hydrotalcite-coated sample and CaCO3-coated sample was observed after 72 h and 192 h salt spray test,respectively.
基金supported by the Charles H.“Skip”Smith Endowment Fund and the Verne M.Willaman Endowment Fund from the Pennsylvania State University to G.C。
文摘Objective:Glioblastoma(GBM)is the most prevalent and aggressive adult primary cancer in the central nervous system.Therapeutic approaches for GBM treatment are under intense investigation,including the use of emerging immunotherapies.Here,we propose an alternative approach to treat GBM through reprogramming proliferative GBM cells into non-proliferative neurons.Methods:Retroviruses were used to target highly proliferative human GBM cells through overexpression of neural transcription factors.Immunostaining,electrophysiological recording,and bulk RNA-seq were performed to investigate the mechanisms underlying the neuronal conversion of human GBM cells.An in vivo intracranial xenograft mouse model was used to examine the neuronal conversion of human GBM cells.Results:We report efficient neuronal conversion from human GBM cells by overexpressing single neural transcription factor Neurogenic differentiation 1(Neuro D1),Neurogenin-2(Neurog2),or Achaete-scute homolog 1(Ascl1).Subtype characterization showed that the majority of Neurog2-and Neuro D1-converted neurons were glutamatergic,while Ascl1 favored GABAergic neuron generation.The GBM cell-converted neurons not only showed pan-neuronal markers but also exhibited neuron-specific electrophysiological activities.Transcriptome analyses revealed that neuronal genes were activated in glioma cells after overexpression of neural transcription factors,and different signaling pathways were activated by different neural transcription factors.Importantly,the neuronal conversion of GBM cells was accompanied by significant inhibition of GBM cell proliferation in both in vitro and in vivo models.Conclusions:These results suggest that GBM cells can be reprogrammed into different subtypes of neurons,leading to a potential alternative approach to treat brain tumors using in vivo cell conversion technology.
基金funding support from the National Major Research and Development Program(2019YFB2203603)the National Science Fund for Distinguished Young Scholars(61725503)+2 种基金the National Natural Science Foundation of China(NSFC)(62275273,11804387,and 91950205)the China Postdoctoral Science Foundation(2020M681847)the Zhejiang Provincial Natural Science Foundation(LZ18F050001).
文摘Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.
文摘The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.
基金supported in part by the National Natural Science Foundation of China(No.11675173)the Youth Innovation Promotion Association CASthe CAS Center for Excellence in Particle Physics(CCEPP)。
文摘The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-bandwidth performance was achieved by optimizing the analog circuits,and a sufficient effective number of bits(ENOB)performance guaranteed using the perfect reconstruction algorithm for mismatch error correction.The proposed system was verified by tests,and the results indicated that a-3 dB bandwidth of 6 GHz and the ENOB performance of 8.7 bits at 1 GHz and 7.6 bits at6 GHz were successfully achieved.
文摘A new method creating depth information for 2D/3D conversion was proposed. The distance between objects is determined by the distances between objects and light source position which is estimated by the analysis of the image. The estimated lighting value is used to normalize the image. A threshold value is determined by some weighted operation between the original image and the normalized image. By applying the threshold value to the original image, background area is removed. Depth information of interested area is calculated from the lighting changes. The final 3D images converted with the proposed method are used to verify its effectiveness.
基金This work was supported by National Natural Science Foundation of China(21825103,11774044,52072059)the Hubei Provincial Natural Science Foundation of China(2019CFA002)+1 种基金the Fundamental Research Funds for the Central Universities(2019kfyXMBZ018 and 2020kfyXJJS050)We also thank the technical support from Analytical and Testing Center in Huazhong University of Science and Technology.
文摘Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.
基金supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2009CB320904the National Natural Science Foundation of China under Grants No. 61121002, No. 61231010, 91120004the Key Projects in the National Science and Technology Pillar Program under Grant No. 2011BAH08B03
文摘2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor required for conversion. In this paper, we introduce a distributed 2D-to-3D video conversion system that includes a 2D-to-3D video conversion module, architecture of the parallel computation on the cloud, and 3D video coding in the system. The system enables cooperation among multiple users in the simultaneous completion of their conversion tasks so that the conversion efficiency is greatly promoted. In the experiments, we evaluate the system based on criteria related to both time consumption and video coding performance.
基金supported by the National Natural Science Foundation of China(22375104,22371134,and 22035003)the National Key R&D Program of China(2022YFA1503301)Haihe Laboratory of Sustainable Chemical Transformations(YYJC202101)。
文摘The targeted construction of donor-acceptor(D-A)materials featuring efficient photothermal(PT)conversion properties has been an attractive but challenging goal.Herein,a new series of coordination polymers(CPs)featuring different PT performances were constructed with flexible linker 1,1′-Ferrocenedicarboxylic acid(FCA)and 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine(TPT)as acceptor and donor molecules including coronene and tetrathiafulvalene(TTF).Based on the flexible configurations of FCA ligand and the directing of donor dependent D-A interactions,the structures of TF-1 to TF-3 featuring distinctive dimension were obtained based on Cd(Ⅱ)ions for investigating the PT property in configurational perspectives.A systematic investigation of the PT properties of the CPs was performed.Notably,TF-3 exhibits the finest PT conversion effect under the irradiation of560 nm laser,while TF-2 shows optimal PT conversion under 808 nm laser irradiation required for biological PT therapy,illustrating the correlation between the structural and component features of the CPs and their PT performances.Furthermore,Zn(Ⅱ)as bio-friendly ion was utilized to construct hypotoxic TF-4 that reveals similar structure to that of TF-2 for potential application.Polydimethylsiloxane(PDMS)patches doped with TF-4 exhibits considerable NIR PT conversion effect under808 nm,represented by the nearly 80℃temperature increased in 120 s for TF-4@PDMS patch(1.2 wt%)under 0.9 W cm^(-2)irradiation,the results of which herein indicate the potential of D-A CPs as versatile platform for the modulation of PT materials.
基金supported by the National Key Research and Development Program of China(2022YFF1001403)the Natural Science Foundation of Hebei Province,China(C2022204205)+1 种基金the National Natural Science Foundation of China(32372194)the National Top Talent Project and Hebei Top Talent,China。
文摘Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth.