期刊文献+
共找到264,322篇文章
< 1 2 250 >
每页显示 20 50 100
基于非线性动态重心粒子群优化的分数阶PI^(λ)D^(μ)控制器设计
1
作者 王仁明 刘闻仲 +2 位作者 鲍刚 张铭锐 杨婕 《控制工程》 CSCD 北大核心 2024年第6期1067-1074,共8页
针对现有Oustaloup滤波器拟合精度不佳、结构复杂的缺点,提出了最优精简Oustaloup滤波器。针对粒子群优化算法整定分数阶PI^(λ)D^(μ)控制器参数时学习能力不充分、迭代收敛乏力的问题,提出了一种改进的粒子群优化算法。该算法设计了... 针对现有Oustaloup滤波器拟合精度不佳、结构复杂的缺点,提出了最优精简Oustaloup滤波器。针对粒子群优化算法整定分数阶PI^(λ)D^(μ)控制器参数时学习能力不充分、迭代收敛乏力的问题,提出了一种改进的粒子群优化算法。该算法设计了双异步非线性动态学习因子,以提高粒子的思考能力与信息共享能力,并增加了粒子群质量重心项,用以加速收敛过程。将改进的算法结合最优精简Oustaloup滤波器应用于分数阶PI^(λ)D^(μ)控制器的设计过程,选取了2个分数阶系统模型进行仿真验证。结果表明,改进的算法收敛速度更快且不易陷入局部最优,所设计的控制系统超调量更小、调节时间更短、稳态误差更小,提高了系统的抗干扰能力。 展开更多
关键词 分数阶PI^(λ)D^(μ) 粒子群优化算法 Oustaloup滤波器 参数整定
下载PDF
改进D^(*)算法的未知场景机器人运动规划
2
作者 鞠慕涵 刘万科 +1 位作者 胡捷 谷宇鹏 《导航定位学报》 CSCD 北大核心 2024年第3期145-153,共9页
随着机器人技术不断发展,自主移动机器人的应用已拓展到复杂未知环境中。针对传统运动规划算法在复杂未知环境中存在搜索盲目、计算效率低、难获得安全轨迹等问题,本文提出了一种基于改进D^(*)算法的运动规划方法。其中,前端路径规划使... 随着机器人技术不断发展,自主移动机器人的应用已拓展到复杂未知环境中。针对传统运动规划算法在复杂未知环境中存在搜索盲目、计算效率低、难获得安全轨迹等问题,本文提出了一种基于改进D^(*)算法的运动规划方法。其中,前端路径规划使用融合跳跃点搜索(JPS)思想的D^(*)算法,后端轨迹优化基于B样条构建二次规划问题。利用矩阵实验室(Matlab)与机器人操作系统(ROS)的仿真平台进行实验,结果表明,改进D^(*)算法在30×30的栅格地图中,相比传统D^(*)算法、FocussedD^(*)、有向D^(*)算法搜索耗时减少0.297、0.269、0.191s;动态障碍物存在时,可使移动机器人快速、安全运动至目标点。 展开更多
关键词 移动机器人 运动规划 D^(*)算法 JPS算法 三次B样条
下载PDF
基于1,4-双(2-甲基-1H-咪唑-1-基)苯的2例d^(10)金属配合物的合成、结构和性能研究 被引量:1
3
作者 王仕友 王玉娜 +2 位作者 邵娅婷 谢惠定 马钰璐 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期173-180,共8页
以溶剂热法合成了2例基于d^(10)金属离子的配合物[Zn(bmib)(HCOO)_(2)]·3H_(2)O(1)和[Cd(bmib)_(0.5)(tdc)(DMF)(H_(2)O)](2)[bmib=1,4-双(2-甲基-1H-咪唑-1-基)苯,H_(2)tdc=2,5-噻吩二羧酸].2例配合物合成条件除金属盐不同外,其... 以溶剂热法合成了2例基于d^(10)金属离子的配合物[Zn(bmib)(HCOO)_(2)]·3H_(2)O(1)和[Cd(bmib)_(0.5)(tdc)(DMF)(H_(2)O)](2)[bmib=1,4-双(2-甲基-1H-咪唑-1-基)苯,H_(2)tdc=2,5-噻吩二羧酸].2例配合物合成条件除金属盐不同外,其余均相同.结构分析揭示,配合物1中H_(2)tdc并未与金属中心配位,Zn^(2+)采取四配位的模式与2个HCOO-和2个bmib配体连接形成一维“Z”字形链.配合物2中Cd^(2+)则采取六配位的模式,由bmib和H_(2)tdc配体共同桥连构成一维梯形链.结果表明金属中心对配合物的结构至关重要.热重分析显示2例配合物热稳定性较好.固体荧光性质表明配合物1和2有蓝色荧光特征,分别在460和470 nm处有最强荧光发射,有用作发光材料的潜在价值. 展开更多
关键词 配合物 晶体结构 d^(10)金属离子 固体荧光
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:1
4
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
5
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms OPTIMIZATION LEACH PEAGSIS
下载PDF
PRB颗粒填料对Cd^(2+)的吸附特征及其孔隙结构动态演变规律
6
作者 江杰 王树飞 +4 位作者 罗豪豪 苏建 曹斐姝 廖长君 陈俊霖 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期2504-2515,共12页
以PRB复合颗粒填料(CGF)开展动态吸附试验,探究其对Cd^(2+)的动态吸附规律与主要影响因素;借助可视化手段与孔隙网络模型(PNM),探究吸附前后CGF的几何特征与孔隙结构演变规律,明确填料消蚀与孔隙堵塞的动态平衡关系。研究结果表明:当泵... 以PRB复合颗粒填料(CGF)开展动态吸附试验,探究其对Cd^(2+)的动态吸附规律与主要影响因素;借助可视化手段与孔隙网络模型(PNM),探究吸附前后CGF的几何特征与孔隙结构演变规律,明确填料消蚀与孔隙堵塞的动态平衡关系。研究结果表明:当泵速为10 r/min、质量浓度为50 mg/L时CGF的平衡吸附量最大,达到了1.81 mg/g;泵速对穿透曲线的影响最大,且低流量更有利于CGF对Cd^(2+)的吸附。吸附后孔隙率提高了7.79%,分形维数最多下降了7.95%,孔隙堵塞对分形维数影响较大;CGF溶蚀降低了表面积与平均等效直径,但球度在1.4~1.6范围的颗粒占比提高到75.9%。吸附后平均配位数由10.43降低至8.65,降低了17.07%;同时参与配位的“棍体”与“球体”数量分别降低了43.28%与31.63%。CGF消蚀导致动态柱中部发生堵塞,降低了孔隙与喉道的连接,但并未出现“实质性”堵塞,PNM仍保持良好的连通性能。 展开更多
关键词 可渗透反应墙(PRB) 动态吸附 填料消蚀 孔隙堵塞 最大球算法
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
7
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
Product quality prediction based on RBF optimized by firefly algorithm 被引量:1
8
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
下载PDF
Path Planning for AUVs Based on Improved APF-AC Algorithm 被引量:1
9
作者 Guojun Chen Danguo Cheng +2 位作者 Wei Chen Xue Yang Tiezheng Guo 《Computers, Materials & Continua》 SCIE EI 2024年第3期3721-3741,共21页
With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater envir... With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety. 展开更多
关键词 PATH-PLANNING autonomous underwater vehicle ant colony algorithm artificial potential field bio-inspired neural network
下载PDF
钢铁物流中基于D^(*)的路线规划算法
10
作者 薄胜 李媛 赵静怡 《河北省科学院学报》 CAS 2024年第1期33-38,共6页
物流企业通过路径规划工作实现车辆巡径,以完成在工作场景中实时规划出便捷可靠的车辆工作路线。因此本文面向钢铁物流配送场景,设计一种基于改进D*的路径规划算法。算法对候选子节点进行约束以禁止车辆斜穿两个障碍物间的狭缝,并且引... 物流企业通过路径规划工作实现车辆巡径,以完成在工作场景中实时规划出便捷可靠的车辆工作路线。因此本文面向钢铁物流配送场景,设计一种基于改进D*的路径规划算法。算法对候选子节点进行约束以禁止车辆斜穿两个障碍物间的狭缝,并且引入拐点惩罚因子以避免规划出与理想路径偏差较大的路径,尽可能避免拐动行为。此算法可避免车辆的非必要转弯,提高大型装卸车辆配送效率和安全性。使用随机障碍物的方法进行仿真测试,仿真结果表明,该路径规划算法所设计出的路径安全性优于已有算法。本文旨在将此算法应用于钢铁物流配送中,以提升钢铁企业物流配送效率。 展开更多
关键词 路径规划 钢铁物流 导航 环境建模 D^(*)算法
下载PDF
Algorithm Selection Method Based on Coupling Strength for Partitioned Analysis of Structure-Piezoelectric-Circuit Coupling
11
作者 Daisuke Ishihara Naoto Takayama 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1237-1258,共22页
In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi... In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm. 展开更多
关键词 MULTIPHYSICS coupling strength partitioned algorithm structure-piezoelectric-circuit coupling strongly coupled algorithm weakly coupled algorithm
下载PDF
A Review of Image Steganography Based on Multiple Hashing Algorithm
12
作者 Abdullah Alenizi Mohammad Sajid Mohammadi +1 位作者 Ahmad A.Al-Hajji Arshiya Sajid Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第8期2463-2494,共32页
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s... Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms. 展开更多
关键词 Image steganography multiple hashing algorithms Hash-LSB approach RSA algorithm discrete cosine transform(DCT)algorithm blowfish algorithm
下载PDF
Hybrid Optimization Algorithm for Handwritten Document Enhancement
13
作者 Shu-Chuan Chu Xiaomeng Yang +2 位作者 Li Zhang Václav Snášel Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3763-3786,共24页
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro... The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms. 展开更多
关键词 Metaheuristic algorithm gannet optimization algorithm hybrid algorithm handwritten document enhancement
下载PDF
Representation of an Integer by a Quadratic Form through the Cornacchia Algorithm
14
作者 Moumouni Djassibo Woba 《Applied Mathematics》 2024年第9期614-629,共16页
Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equa... Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process. 展开更多
关键词 Quadratic Form Cornacchia algorithm Associated Polynomials Euclid’s algorithm Prime Number
下载PDF
Multi-Objective Optimization of VBHF in Deep Drawing Based on the Improved QO-Jaya Algorithm
15
作者 Xiangyu Jiang Zhaoxi Hong +1 位作者 Yixiong Feng Jianrong Tan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期189-202,共14页
Blank holder force(BHF)is a crucial parameter in deep drawing,having close relation with the forming quality of sheet metal.However,there are different BHFs maintaining the best forming effect in different stages of d... Blank holder force(BHF)is a crucial parameter in deep drawing,having close relation with the forming quality of sheet metal.However,there are different BHFs maintaining the best forming effect in different stages of deep drawing.The variable blank holder force(VBHF)varying with the drawing stage can overcome this problem at an extent.The optimization of VBHF is to determine the optimal BHF in every deep drawing stage.In this paper,a new heuristic optimization algorithm named Jaya is introduced to solve the optimization efficiently.An improved“Quasi-oppositional”strategy is added to Jaya algorithm for improving population diversity.Meanwhile,an innovated stop criterion is added for better convergence.Firstly,the quality evaluation criteria for wrinkling and tearing are built.Secondly,the Kriging models are developed to approximate and quantify the relation between VBHF and forming defects under random sampling.Finally,the optimization models are established and solved by the improved QO-Jaya algorithm.A VBHF optimization example of component with complicated shape and thin wall is studied to prove the effectiveness of the improved Jaya algorithm.The optimization results are compared with that obtained by other algorithms based on the TOPSIS method. 展开更多
关键词 Variable blank holder force Multi-objective optimization QO-Jaya algorithm algorithm stop criterion
下载PDF
RRT Autonomous Detection Algorithm Based on Multiple Pilot Point Bias Strategy and Karto SLAM Algorithm
16
作者 Lieping Zhang Xiaoxu Shi +3 位作者 Liu Tang Yilin Wang Jiansheng Peng Jianchu Zou 《Computers, Materials & Continua》 SCIE EI 2024年第2期2111-2136,共26页
A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of... A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection. 展开更多
关键词 Autonomous detection RRT algorithm mobile robot ROS Karto SLAM algorithm
下载PDF
Synergistic Swarm Optimization Algorithm
17
作者 Sharaf Alzoubi Laith Abualigah +3 位作者 Mohamed Sharaf Mohammad Sh.Daoud Nima Khodadadi Heming Jia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2557-2604,共48页
This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optima... This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm. 展开更多
关键词 Synergistic swarm optimization algorithm optimization algorithm METAHEURISTIC engineering problems benchmark functions
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing
18
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
Maximizing Resource Efficiency in Cloud Data Centers through Knowledge-Based Flower Pollination Algorithm (KB-FPA)
19
作者 Nidhika Chauhan Navneet Kaur +4 位作者 Kamaljit Singh Saini Sahil Verma Kavita Ruba Abu Khurma Pedro A.Castillo 《Computers, Materials & Continua》 SCIE EI 2024年第6期3757-3782,共26页
Cloud computing is a dynamic and rapidly evolving field,where the demand for resources fluctuates continuously.This paper delves into the imperative need for adaptability in the allocation of resources to applications... Cloud computing is a dynamic and rapidly evolving field,where the demand for resources fluctuates continuously.This paper delves into the imperative need for adaptability in the allocation of resources to applications and services within cloud computing environments.The motivation stems from the pressing issue of accommodating fluctuating levels of user demand efficiently.By adhering to the proposed resource allocation method,we aim to achieve a substantial reduction in energy consumption.This reduction hinges on the precise and efficient allocation of resources to the tasks that require those most,aligning with the broader goal of sustainable and eco-friendly cloud computing systems.To enhance the resource allocation process,we introduce a novel knowledge-based optimization algorithm.In this study,we rigorously evaluate its efficacy by comparing it to existing algorithms,including the Flower Pollination Algorithm(FPA),Spark Lion Whale Optimization(SLWO),and Firefly Algo-rithm.Our findings reveal that our proposed algorithm,Knowledge Based Flower Pollination Algorithm(KB-FPA),consistently outperforms these conventional methods in both resource allocation efficiency and energy consumption reduction.This paper underscores the profound significance of resource allocation in the realm of cloud computing.By addressing the critical issue of adaptability and energy efficiency,it lays the groundwork for a more sustainable future in cloud computing systems.Our contribution to the field lies in the introduction of a new resource allocation strategy,offering the potential for significantly improved efficiency and sustainability within cloud computing infrastructures. 展开更多
关键词 Cloud computing resource allocation energy consumption optimization algorithm flower pollination algorithm
下载PDF
An Optimal Node Localization in WSN Based on Siege Whale Optimization Algorithm
20
作者 Thi-Kien Dao Trong-The Nguyen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2201-2237,共37页
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand... Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios. 展开更多
关键词 Node localization whale optimization algorithm wireless sensor networks siege whale optimization algorithm OPTIMIZATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部