In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay...In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay D2D communications enabled cellular networks. An analysis of average energy efficiency and spectrum efficiency are developed and closed-form expressions are obtained for two types of D2D communications modes under the effect of Rayleigh fading channel, path loss, and co-channel interference. Analytical results are validated through numerical simulations. Based on the simulation, the effects of the interference, the distance between D2D pair and the position of relay node on the energy efficiency and spectrum efficiency of D2D communications are investigated. The optimal D2D transmission powers of these two modes to maximize the energy efficiency are also investigated.展开更多
In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum whic...In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum which is allocated to the cellular users. Therefore, the co-channel interference will be more complicated in the case of crosscell D2D communications. In this article, a novel spectrum allocation algorithm for inter-cell D2D communication considering the traffic load is proposed. The traffic load can be balanced by the proposed algorithm. Meanwhile D2D users can multiplex the spectrum allocated to a number of cellular users with a certain percentage to meet the requirements of Qo S of D2D communications and reduce the interference to cellular users. Finally, the simulation results demonstrate that the proposed algorithm can meet the needs of D2D users, balance the traffic load and improve the overall throughput of the system.展开更多
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is the most serious disease of potato worldwide. The adoption of varieties with resistance genes, especially broad-spectrum resistance genes,...Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is the most serious disease of potato worldwide. The adoption of varieties with resistance genes, especially broad-spectrum resistance genes, is the most efficient approach to control late blight. Solanum demissum is a well-known wild potato species from which 11 race-specific resistance genes have been identified, however, no broad-spectrum resistance genes like RB have been reported in this species. Here, we report a novel reisistance locus from S. demissum that potentially confer broad-spectrum resistance to late blight. A small segregating population of S. demissum were assessed for resistance to aggressive P. infestans isolates(race 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11). This coupled with nucleotide binding site(NBS) profiling analyses, led to the identification of three fragments that linked to the potential candidate resistance gene(s). Cloning and sequence analysis of these fragments suggested that the identified resistance gene locus is located in the region containing R2 resistance gene at chromosome 4. Based on the sequences of the cloned fragments, a co-segregating sequence characterized amplified region(SCAR) marker, RDSP, was developed. The newly identified marker RDSP will be useful for marker assisted breeding and further cloning of this potential resistance gene locus.展开更多
To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduce...To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduced into SAR tomography. With the estimated AR parameters of ARMA model of noise through Yule-Walker equation, the signal series of height is pre-filtered. Then, through ESPRIT, the spectrum is obtained and the aperture in height direction is synthesized. Finally, the SAR tomography imaging of scene is achieved. The results of processing on signal with non-Gaussian noise demonstrate the robustness of the proposed method. The tomography imaging of the scenes shows that the higher-order spectrum analysis is feasible in the application.展开更多
An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly hand...An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly handle the case of the fast moving targets in high squint geometry.As for the issue,the analytical expression for the two Dimensional(2-D)signal spectrum of moving targets is derived and a fast raw echo simulation method is proposed in this study.The proposed simulator can accommodate the moving targets in the high squint geometry,whose processing steps of the simulation are given in detail and its computational complexity is analyzed.The simulation data for static and moving targets are processed and analyzed,and the results are given to validate the effectiveness of the proposed approach.展开更多
The device-to-device(D2D)technology performs explicit communication between the terminal and the base station(BS)terminal,so there is no need to transmit data through the BS system.The establishment of a short-distanc...The device-to-device(D2D)technology performs explicit communication between the terminal and the base station(BS)terminal,so there is no need to transmit data through the BS system.The establishment of a short-distance D2D communication link can greatly reduce the burden on the BS server.At present,D2D is one of the key technologies in 5G technology and has been studied in depth.D2D communication reuses the resources of cellular users to improve system key parameters like utilization and throughput.However,repeated use of the spectrum and coexistence of cellular users can cause co-channel interference.Aiming at the interference problem under the constraint of fair resource allocation and improving the system throughput,this paper proposes an effective resource optimization scheme based on the firework method.The main idea is to expand the weighted sum rate and convert the allocated resource expression into fireworks to determine the correlation matrix.The simulation results show that,compared with the existing scheme,this scheme improves system performance by reducing interference.展开更多
In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band s...In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.展开更多
基金supported by the National Natural Science Foundation of China under Grant U1805262, 61871446, 61671251 and 61701201the Natural Science Foundation of Jiangsu Province under Grant No.BK20170758+2 种基金the Natural Science Foundation for colleges and universities of Jiangsu Province under Grant No.17KJB510011the open research fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2015D10Project of Key Laboratory of Wireless Communications of Jiangsu Province under Grant No.NK214001
文摘In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay D2D communications enabled cellular networks. An analysis of average energy efficiency and spectrum efficiency are developed and closed-form expressions are obtained for two types of D2D communications modes under the effect of Rayleigh fading channel, path loss, and co-channel interference. Analytical results are validated through numerical simulations. Based on the simulation, the effects of the interference, the distance between D2D pair and the position of relay node on the energy efficiency and spectrum efficiency of D2D communications are investigated. The optimal D2D transmission powers of these two modes to maximize the energy efficiency are also investigated.
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2015D07)
文摘In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum which is allocated to the cellular users. Therefore, the co-channel interference will be more complicated in the case of crosscell D2D communications. In this article, a novel spectrum allocation algorithm for inter-cell D2D communication considering the traffic load is proposed. The traffic load can be balanced by the proposed algorithm. Meanwhile D2D users can multiplex the spectrum allocated to a number of cellular users with a certain percentage to meet the requirements of Qo S of D2D communications and reduce the interference to cellular users. Finally, the simulation results demonstrate that the proposed algorithm can meet the needs of D2D users, balance the traffic load and improve the overall throughput of the system.
基金supported by the Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture, P.R.Chinafunded by the National Natural Science Foundation of China (NSFC, 31000738)
文摘Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is the most serious disease of potato worldwide. The adoption of varieties with resistance genes, especially broad-spectrum resistance genes, is the most efficient approach to control late blight. Solanum demissum is a well-known wild potato species from which 11 race-specific resistance genes have been identified, however, no broad-spectrum resistance genes like RB have been reported in this species. Here, we report a novel reisistance locus from S. demissum that potentially confer broad-spectrum resistance to late blight. A small segregating population of S. demissum were assessed for resistance to aggressive P. infestans isolates(race 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11). This coupled with nucleotide binding site(NBS) profiling analyses, led to the identification of three fragments that linked to the potential candidate resistance gene(s). Cloning and sequence analysis of these fragments suggested that the identified resistance gene locus is located in the region containing R2 resistance gene at chromosome 4. Based on the sequences of the cloned fragments, a co-segregating sequence characterized amplified region(SCAR) marker, RDSP, was developed. The newly identified marker RDSP will be useful for marker assisted breeding and further cloning of this potential resistance gene locus.
基金supported partly by the New Century Excellent Talents in University(23901019)the Sichuan Provincial Youth Science and Technology Foundation(06ZQ026-006).
文摘To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduced into SAR tomography. With the estimated AR parameters of ARMA model of noise through Yule-Walker equation, the signal series of height is pre-filtered. Then, through ESPRIT, the spectrum is obtained and the aperture in height direction is synthesized. Finally, the SAR tomography imaging of scene is achieved. The results of processing on signal with non-Gaussian noise demonstrate the robustness of the proposed method. The tomography imaging of the scenes shows that the higher-order spectrum analysis is feasible in the application.
文摘An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly handle the case of the fast moving targets in high squint geometry.As for the issue,the analytical expression for the two Dimensional(2-D)signal spectrum of moving targets is derived and a fast raw echo simulation method is proposed in this study.The proposed simulator can accommodate the moving targets in the high squint geometry,whose processing steps of the simulation are given in detail and its computational complexity is analyzed.The simulation data for static and moving targets are processed and analyzed,and the results are given to validate the effectiveness of the proposed approach.
基金This work was supported by the King Saud University(in Riyadh,Saudi Arabia)through the Researcher Supporting Project Number(RSP-2021/387).
文摘The device-to-device(D2D)technology performs explicit communication between the terminal and the base station(BS)terminal,so there is no need to transmit data through the BS system.The establishment of a short-distance D2D communication link can greatly reduce the burden on the BS server.At present,D2D is one of the key technologies in 5G technology and has been studied in depth.D2D communication reuses the resources of cellular users to improve system key parameters like utilization and throughput.However,repeated use of the spectrum and coexistence of cellular users can cause co-channel interference.Aiming at the interference problem under the constraint of fair resource allocation and improving the system throughput,this paper proposes an effective resource optimization scheme based on the firework method.The main idea is to expand the weighted sum rate and convert the allocated resource expression into fireworks to determine the correlation matrix.The simulation results show that,compared with the existing scheme,this scheme improves system performance by reducing interference.
文摘In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.