Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However,...Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.展开更多
The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, d...The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies.展开更多
Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operatio...Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.展开更多
This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered ...This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies.展开更多
>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in re...>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.展开更多
文摘Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.
基金supported by the National Natural Science Foundation of China(Grants No.51190094,50909073,and 51179130)the Hubei Province Natural Science Foundation(Grant No.2010CDB08401)
文摘The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies.
文摘Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.
文摘This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies.
基金Project Supported by National Natural Science Foundation of China ( 50777069 ).
文摘>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.