In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-...In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-equilibrium electric discharge at low pressure. The transport and Poisson's equations form a self-consistent model. This equation system is written in cylindrical coordinates following the geometric shape of a plasma reactor. Our transport equation system is discretized using the finite volume approach and resolved by the N-BEE explicit scheme coupled to the time splitting method. This programming structure reduces computation time considerably. The 2D code is carried out and tested by comparing our results with those found in literature.展开更多
In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on...In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.展开更多
Two high-order splitting schemes based on the idea of the operators splitting method are given. The three-dimensional advection-diffusion equation was split into several one-dimensional equations that were solved by t...Two high-order splitting schemes based on the idea of the operators splitting method are given. The three-dimensional advection-diffusion equation was split into several one-dimensional equations that were solved by these two schemes, only three computational grid points were needed in each direction but the accuracy reaches the spatial fourth-order. The third scheme proposed is based on the classical ADI scheme and the accuracy of the advection term of it can reach the spatial fourth-order. Finally, two typical numerical experiments show that the solutions of these three schemes compare well with that given by the analytical solution when the Peclet number is not bigger than 5.展开更多
In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of...In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of surfaces i into several sub-domains, which are called the layers of the flow. Every interface i between two sub-domains shares the same geometry. After establishing a semi-geodesic coordinate (S-coordinate) system based on i, Navier-Stoke equations in this coordinate can be expressed as the sum of two operators, of which one is called the membrane operator defined on the tangent space on i, another one is called the bending operator taking value in the normal space on i. Then the derivatives of velocity with respect to the normal direction of the surface are approximated by the Euler central difference, and an approximate form of Navier-Stokes equations on the surface i is obtained, which is called the two-dimensional three-component (2D-3C) Navier-Stokes equations on a two dimensional manifold. Solving these equations by alternate iteration, an approximate solution to the original 3D Navier-Stokes equations is obtained. In addition, the proof of the existence of solutions to 2D-3C Navier-Stokes equations is provided, and some approximate methods for solving 2D-3C Navier-Stot4es equations are presented.展开更多
The alternately directional implicit (ADI) scheme is usually used in 3D depth migration. It splits the 3D square-root operator along crossline and inline directions alternately. In this paper, based on the ideal of ...The alternately directional implicit (ADI) scheme is usually used in 3D depth migration. It splits the 3D square-root operator along crossline and inline directions alternately. In this paper, based on the ideal of data line, the four-way splitting schemes and their splitting errors for the finite-difference (FD) method and the hybrid method are investigated. The wavefield extrapolation of four-way splitting scheme is accomplished on a data line and is stable unconditionally. Numerical analysis of splitting errors show that the two-way FD migration have visible numerical anisotropic errors, and that four-way FD migration has much less splitting errors than two-way FD migration has. For the hybrid method, the differences of numerical anisotropic errors between two-way scheme and four-way scheme are small in the case of lower lateral velocity variations. The schemes presented in this paper can be used in 3D post-stack or prestack depth migration. Two numerical calculations of 3D depth migration are completed. One is the four-way FD and hybrid 3D post-stack depth migration for an impulse response, which shows that the anisotropic errors can be eliminated effectively in the cases of constant and variable velocity variations. The other is the 3D shot-profile prestack depth migration for SEG/EAEG benchmark model with two-way hybrid splitting scheme, which presents good imaging results. The Message Passing Interface (MPI) programme based on shot number is adopted.展开更多
Deformation control constitutes one of the main technological challenges in three dimensional(3D)concrete printing,and it presents a challenge that must be addressed to achieve a precise and reliable construction proc...Deformation control constitutes one of the main technological challenges in three dimensional(3D)concrete printing,and it presents a challenge that must be addressed to achieve a precise and reliable construction process.Model-based information of the expected deformations and stresses is required to optimize the construction process in association with the specific properties of the concrete mix.In this work,a novel thermodynamically consistent finite strain constitutive model for fresh and early-age 3D-printable concrete is proposed.The model is then used to simulate the 3D concrete printing process to assess layer shapes,deformations,forces acting on substrate layers and prognoses of possible structural collapse during the layer-by-layer buildup.The constitutive formulation is based on a multiplicative split of the deformation gradient into elastic,aging and viscoplastic parts,in combination with a hyperelastic potential and considering evolving material properties to account for structural buildup or aging.One advantage of this model is the stress-update-scheme,which is similar to that of small strain plasticity and therefore enables an efficient integration with existing material routines.The constitutive model uses the particle finite element method,which serves as the simulation framework,allowing for modeling of the evolving free surfaces during the extrusion process.Computational analyses of three printed layers are used to create deformation plots,which can then be used to control the deformations during 3D concrete printing.This study offers further investigations,on the structural level,focusing on the potential structural collapse of a 3D printed concrete wall.The capability of the proposed model to simulate 3D concrete printing processes across the scales—from a few printed layers to the scale of the whole printed structure—in a unified fashion with one constitutive formulation,is demonstrated.展开更多
In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical s...In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.展开更多
An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the ...An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled f'mite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage.展开更多
文摘In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-equilibrium electric discharge at low pressure. The transport and Poisson's equations form a self-consistent model. This equation system is written in cylindrical coordinates following the geometric shape of a plasma reactor. Our transport equation system is discretized using the finite volume approach and resolved by the N-BEE explicit scheme coupled to the time splitting method. This programming structure reduces computation time considerably. The 2D code is carried out and tested by comparing our results with those found in literature.
文摘In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.
文摘Two high-order splitting schemes based on the idea of the operators splitting method are given. The three-dimensional advection-diffusion equation was split into several one-dimensional equations that were solved by these two schemes, only three computational grid points were needed in each direction but the accuracy reaches the spatial fourth-order. The third scheme proposed is based on the classical ADI scheme and the accuracy of the advection term of it can reach the spatial fourth-order. Finally, two typical numerical experiments show that the solutions of these three schemes compare well with that given by the analytical solution when the Peclet number is not bigger than 5.
基金Supported by the National High-Tech Research and Development Program of China (No. 2009AA01A135)the National Natural Science Foundation of China (Nos. 10971165, 11001216, 11071193, 10871156)the Foundation of AVIC Chengdu Aircraft Design and Research Institute
文摘In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of surfaces i into several sub-domains, which are called the layers of the flow. Every interface i between two sub-domains shares the same geometry. After establishing a semi-geodesic coordinate (S-coordinate) system based on i, Navier-Stoke equations in this coordinate can be expressed as the sum of two operators, of which one is called the membrane operator defined on the tangent space on i, another one is called the bending operator taking value in the normal space on i. Then the derivatives of velocity with respect to the normal direction of the surface are approximated by the Euler central difference, and an approximate form of Navier-Stokes equations on the surface i is obtained, which is called the two-dimensional three-component (2D-3C) Navier-Stokes equations on a two dimensional manifold. Solving these equations by alternate iteration, an approximate solution to the original 3D Navier-Stokes equations is obtained. In addition, the proof of the existence of solutions to 2D-3C Navier-Stokes equations is provided, and some approximate methods for solving 2D-3C Navier-Stot4es equations are presented.
基金This research is supported by the Major State Basic Research Program of Peoples's Republic of China (No.C1999032803), the National Key Nature Science Foundation (No.40004003) and ICMSEC Institute Director Foundation.
文摘The alternately directional implicit (ADI) scheme is usually used in 3D depth migration. It splits the 3D square-root operator along crossline and inline directions alternately. In this paper, based on the ideal of data line, the four-way splitting schemes and their splitting errors for the finite-difference (FD) method and the hybrid method are investigated. The wavefield extrapolation of four-way splitting scheme is accomplished on a data line and is stable unconditionally. Numerical analysis of splitting errors show that the two-way FD migration have visible numerical anisotropic errors, and that four-way FD migration has much less splitting errors than two-way FD migration has. For the hybrid method, the differences of numerical anisotropic errors between two-way scheme and four-way scheme are small in the case of lower lateral velocity variations. The schemes presented in this paper can be used in 3D post-stack or prestack depth migration. Two numerical calculations of 3D depth migration are completed. One is the four-way FD and hybrid 3D post-stack depth migration for an impulse response, which shows that the anisotropic errors can be eliminated effectively in the cases of constant and variable velocity variations. The other is the 3D shot-profile prestack depth migration for SEG/EAEG benchmark model with two-way hybrid splitting scheme, which presents good imaging results. The Message Passing Interface (MPI) programme based on shot number is adopted.
文摘Deformation control constitutes one of the main technological challenges in three dimensional(3D)concrete printing,and it presents a challenge that must be addressed to achieve a precise and reliable construction process.Model-based information of the expected deformations and stresses is required to optimize the construction process in association with the specific properties of the concrete mix.In this work,a novel thermodynamically consistent finite strain constitutive model for fresh and early-age 3D-printable concrete is proposed.The model is then used to simulate the 3D concrete printing process to assess layer shapes,deformations,forces acting on substrate layers and prognoses of possible structural collapse during the layer-by-layer buildup.The constitutive formulation is based on a multiplicative split of the deformation gradient into elastic,aging and viscoplastic parts,in combination with a hyperelastic potential and considering evolving material properties to account for structural buildup or aging.One advantage of this model is the stress-update-scheme,which is similar to that of small strain plasticity and therefore enables an efficient integration with existing material routines.The constitutive model uses the particle finite element method,which serves as the simulation framework,allowing for modeling of the evolving free surfaces during the extrusion process.Computational analyses of three printed layers are used to create deformation plots,which can then be used to control the deformations during 3D concrete printing.This study offers further investigations,on the structural level,focusing on the potential structural collapse of a 3D printed concrete wall.The capability of the proposed model to simulate 3D concrete printing processes across the scales—from a few printed layers to the scale of the whole printed structure—in a unified fashion with one constitutive formulation,is demonstrated.
基金This work was supported by Major State Basic Research Program of Peoples's Republic of China(No.G1999032800)Major Project(No.49894190)the National Natural Science Foundation of China(Grant No.40004003).All numerical experiments were completed on the PC-cluster in the State Key Lab of Scientific/Engineering Computing.
文摘In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.
基金Project supported by the National Nature Science Foundation of China (Grant No.50479068) the Program for New Century Excellent Talents in Universities (Grant No. NCET-04-0494).
文摘An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled f'mite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage.