The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical dr...The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical drains has been proved to be an effective method in the treatment of soft foundation. A three-dimensional numerical analysis of the coupled methods was presented, in which the smear zone and the well resistance were taken into account. The variations of the basic soil parameters including the permeability coefficient and the coefficient of volume compressibility were considered in the numerical model. The result of the numerical model was then compared to the measured value. The results indicate that the decrease of coefficient of volume compressibility accelerates the consolidation of the soil while the influence of hydraulic conductivity is insignificant. A cube drain presents the closest result to the real situation compared to the other equivalent methods of prefabricated vertical drain (PVD). The case study indicates that the numerical model with variation of soil parameters is closer to the measured value than the numerical model without variation of soil parameters.展开更多
Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model ...Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model cannot provide satisfactory solution in terms of accuracy, convergence and consideration of interlocking effects. To this end, this paper proposes a heuristic solving method for MLCSQN model to boost the performance prediction of distributed multimedia software systems. The core concept of this method is referred to as the basic model, which can be further decomposed into two sub-models: client sub-model and server sub-model. The client sub-model calculates think time for server sub-model, and the server sub-model calculates waiting time for client sub-model. Using a breadthfirst traversal from leaf nodes to the root node and vice versa, the basic model is then adapted to MLCSQN, with net sub-models iteratively resolved. Similarly, the interlocking problem is effectively addressed with the help of the basic model. This analytical solver enjoys advantages of fast convergence, independence on specific average value analysis(MVA) methods and eliminating interlocking effects.Numerical experimental results on accuracy and computation efficiency verify its superiority over anchors.展开更多
基金Project(2010THZ021)supported by Tsinghua University,ChinaProject(50978139)supported by the National Natural Science Foundation of ChinaProject(2012CB719804)supported by the National Basic Research Program of China
文摘The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical drains has been proved to be an effective method in the treatment of soft foundation. A three-dimensional numerical analysis of the coupled methods was presented, in which the smear zone and the well resistance were taken into account. The variations of the basic soil parameters including the permeability coefficient and the coefficient of volume compressibility were considered in the numerical model. The result of the numerical model was then compared to the measured value. The results indicate that the decrease of coefficient of volume compressibility accelerates the consolidation of the soil while the influence of hydraulic conductivity is insignificant. A cube drain presents the closest result to the real situation compared to the other equivalent methods of prefabricated vertical drain (PVD). The case study indicates that the numerical model with variation of soil parameters is closer to the measured value than the numerical model without variation of soil parameters.
基金supported by the Application Research of the Remote Sensing Technology on Global Energy Internet(JYYKJXM(2017)011)the National Natural Science Foundation of China(61671332,41701518,41771452,41771454,U1736206)+4 种基金National key R&D Project(2016YFE0202300)Hubei Province Technological Innovation Major Project(2017AAA123)Applied Basic Research Program of Wuhan City(2016010101010025)Basic Research Program of Shenzhen(JCYJ20170306171431656)the Fundamental Research Funds for the Central Universities(2042016gf0033)
文摘Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model cannot provide satisfactory solution in terms of accuracy, convergence and consideration of interlocking effects. To this end, this paper proposes a heuristic solving method for MLCSQN model to boost the performance prediction of distributed multimedia software systems. The core concept of this method is referred to as the basic model, which can be further decomposed into two sub-models: client sub-model and server sub-model. The client sub-model calculates think time for server sub-model, and the server sub-model calculates waiting time for client sub-model. Using a breadthfirst traversal from leaf nodes to the root node and vice versa, the basic model is then adapted to MLCSQN, with net sub-models iteratively resolved. Similarly, the interlocking problem is effectively addressed with the help of the basic model. This analytical solver enjoys advantages of fast convergence, independence on specific average value analysis(MVA) methods and eliminating interlocking effects.Numerical experimental results on accuracy and computation efficiency verify its superiority over anchors.