为提高电动汽车无线充电在变负载条件下的线圈抗偏移能力,提出一种基于双D形正交(double-Dquadrature,DDQ)混合拓扑的感应电能传输(inductive power transfer,IPT)系统参数配置及优化方法。结合DDQ线圈的自解耦特性,分别采用一次侧与二...为提高电动汽车无线充电在变负载条件下的线圈抗偏移能力,提出一种基于双D形正交(double-Dquadrature,DDQ)混合拓扑的感应电能传输(inductive power transfer,IPT)系统参数配置及优化方法。结合DDQ线圈的自解耦特性,分别采用一次侧与二次侧对称的LCL谐振网络、LC串联谐振网络,构成系统的双能量传输通道;进一步通过配置相应的电感与电容值,使两通道的输出电流均与负载无关,而分别与线圈互感成正比与反比关系,基于电流叠加方式达到变负载条件下恒流输出的目的。在此基础上,分析恒流输出下的DDQ线圈互感变化规律,并通过优化参数Lt1与Lt2,使IPT系统可允许的拾取偏移最大。仿真与实验结果表明,在所容许0%~49.3%的互感变化范围内,二次侧输出电流在变负载条件下均具有不超过±5%的稳流效果。展开更多
文摘为提高电动汽车无线充电在变负载条件下的线圈抗偏移能力,提出一种基于双D形正交(double-Dquadrature,DDQ)混合拓扑的感应电能传输(inductive power transfer,IPT)系统参数配置及优化方法。结合DDQ线圈的自解耦特性,分别采用一次侧与二次侧对称的LCL谐振网络、LC串联谐振网络,构成系统的双能量传输通道;进一步通过配置相应的电感与电容值,使两通道的输出电流均与负载无关,而分别与线圈互感成正比与反比关系,基于电流叠加方式达到变负载条件下恒流输出的目的。在此基础上,分析恒流输出下的DDQ线圈互感变化规律,并通过优化参数Lt1与Lt2,使IPT系统可允许的拾取偏移最大。仿真与实验结果表明,在所容许0%~49.3%的互感变化范围内,二次侧输出电流在变负载条件下均具有不超过±5%的稳流效果。