Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were perfo...Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.展开更多
Semi-solid processing (SSP) of A356 aluminum alloy was discussed via cooling slope (CS) method. The D-optimal design of experiment (DODE) was employed for experimental design and analysis of results. 38 random e...Semi-solid processing (SSP) of A356 aluminum alloy was discussed via cooling slope (CS) method. The D-optimal design of experiment (DODE) was employed for experimental design and analysis of results. 38 random experiments obtained by software were carried out. In experimental stage, the molten aluminum alloy was poured on an inclined plate with different lengths of 100, 300 and 500 mm set at 30°, 45° and 60° of slope angles respectively. Three different pouring temperatures of 660, 680 and 700 ℃ were also used. After the casting process, the partial re-melting treatment was carried out at 590 ℃ for different isothermal time of 5, 8 or 12 min. The combined effect of these factors on globularity of the primary α(Al) crystals was investigated and optimized using DODE. The results indicated that the primary dendritic phase in the conventionally cast A356 alloy was transformed into a non-dendritic one in ingots cast over a cooling plate. The CS processed samples exhibited a globular structure only after re-heating to semi-solid region. The optimum values of pouring temperature, cooling length, slope angle and isothermal holding time were found to be 660 ℃, 360 mm, 48°, and 9 min, respectively. In this case, the globularity of primary crystals was obtained, about 0.91. The obtained model is highly significant with a correlation coefficient of 0.9860.展开更多
文摘Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.
文摘Semi-solid processing (SSP) of A356 aluminum alloy was discussed via cooling slope (CS) method. The D-optimal design of experiment (DODE) was employed for experimental design and analysis of results. 38 random experiments obtained by software were carried out. In experimental stage, the molten aluminum alloy was poured on an inclined plate with different lengths of 100, 300 and 500 mm set at 30°, 45° and 60° of slope angles respectively. Three different pouring temperatures of 660, 680 and 700 ℃ were also used. After the casting process, the partial re-melting treatment was carried out at 590 ℃ for different isothermal time of 5, 8 or 12 min. The combined effect of these factors on globularity of the primary α(Al) crystals was investigated and optimized using DODE. The results indicated that the primary dendritic phase in the conventionally cast A356 alloy was transformed into a non-dendritic one in ingots cast over a cooling plate. The CS processed samples exhibited a globular structure only after re-heating to semi-solid region. The optimum values of pouring temperature, cooling length, slope angle and isothermal holding time were found to be 660 ℃, 360 mm, 48°, and 9 min, respectively. In this case, the globularity of primary crystals was obtained, about 0.91. The obtained model is highly significant with a correlation coefficient of 0.9860.