In this study, we report the experimental reali-zation of seven-qubit Deutsch-Jozsa (D-J) algorithm and controlled phase-shift gates with improved precision using liquid state nuclear magnetic resonance (NMR). Theexpe...In this study, we report the experimental reali-zation of seven-qubit Deutsch-Jozsa (D-J) algorithm and controlled phase-shift gates with improved precision using liquid state nuclear magnetic resonance (NMR). Theexperimental results have shown that transformations Uf in the seven-qubit D-J algorithm have been implemented with different pulse sequences, and whether f is constant orbalanced is determined by using only a single function call(Uf). Furthermore, we propose an experimental method tomeasure and correct the error in the controlled phase-shift gate that is simple and feasible in experiments, and can have precise phase shifts. These may offer the possibility ofsurmounting the difficulties of low signal-to-noise ratio(SNR) in multi-qubit NMR quantum computers, morecomplicated experimental techniques, and the increase ofgate errors due to using a large number of imperfect selec-tive pulses. These are also applied to more complicated quantum algorithms with more qubits, such as quantumFourier transformation and Shor抯 algorithm.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.19874073)the National Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KJCX2-W1)
文摘In this study, we report the experimental reali-zation of seven-qubit Deutsch-Jozsa (D-J) algorithm and controlled phase-shift gates with improved precision using liquid state nuclear magnetic resonance (NMR). Theexperimental results have shown that transformations Uf in the seven-qubit D-J algorithm have been implemented with different pulse sequences, and whether f is constant orbalanced is determined by using only a single function call(Uf). Furthermore, we propose an experimental method tomeasure and correct the error in the controlled phase-shift gate that is simple and feasible in experiments, and can have precise phase shifts. These may offer the possibility ofsurmounting the difficulties of low signal-to-noise ratio(SNR) in multi-qubit NMR quantum computers, morecomplicated experimental techniques, and the increase ofgate errors due to using a large number of imperfect selec-tive pulses. These are also applied to more complicated quantum algorithms with more qubits, such as quantumFourier transformation and Shor抯 algorithm.