对基于小波变换的自适应滤波技术中较为先进的D-LMS(Decomposition Least Mean Square)算法进行改进,推导出一种变步长D-LMS算法。通过建立非线性系统模型,在基于MATLAB的仿真实验中,分别得出原D-LMS算法和改进算法的系统辨识图形和数...对基于小波变换的自适应滤波技术中较为先进的D-LMS(Decomposition Least Mean Square)算法进行改进,推导出一种变步长D-LMS算法。通过建立非线性系统模型,在基于MATLAB的仿真实验中,分别得出原D-LMS算法和改进算法的系统辨识图形和数据。结果表明,两种小波分解自适应算法都能够很好的对非线性系统进行辨识,而改进的变步长D-LMS算法的收敛速度及跟踪速度更快,稳态误调噪声较小,即辨识结果更加精确。展开更多
文摘对基于小波变换的自适应滤波技术中较为先进的D-LMS(Decomposition Least Mean Square)算法进行改进,推导出一种变步长D-LMS算法。通过建立非线性系统模型,在基于MATLAB的仿真实验中,分别得出原D-LMS算法和改进算法的系统辨识图形和数据。结果表明,两种小波分解自适应算法都能够很好的对非线性系统进行辨识,而改进的变步长D-LMS算法的收敛速度及跟踪速度更快,稳态误调噪声较小,即辨识结果更加精确。