In cognitive radio, the detection probability of primary user affects the signal receiving performance for both primary and secondary users significantly. In this paper, a new Dempster-Shafer (D-S) algorithm with cr...In cognitive radio, the detection probability of primary user affects the signal receiving performance for both primary and secondary users significantly. In this paper, a new Dempster-Shafer (D-S) algorithm with credit scale for decision fusion in spectrum sensing is proposed for the purpose to improve the performance of detection in cognitive radio. The validity of this method is established by simulation in the environment of multiple cognitive users who know their signal to noise ratios (SNR) and a central node. The channels between the cognitive users and the central node are considered to be additive white Ganssian noise (AWGN). Compared with traditional data fusion rules, the proposed D-S algorithm with credit scale provides a better detection performance.展开更多
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
基金Supported by the National High Technology Research and Development Programme of China (No. 2007AA01Z268), National Natural Science Foundation of China (No. 60702028)and the Starting Ftmd for Science Research of NJUST (AIM1947).
文摘In cognitive radio, the detection probability of primary user affects the signal receiving performance for both primary and secondary users significantly. In this paper, a new Dempster-Shafer (D-S) algorithm with credit scale for decision fusion in spectrum sensing is proposed for the purpose to improve the performance of detection in cognitive radio. The validity of this method is established by simulation in the environment of multiple cognitive users who know their signal to noise ratios (SNR) and a central node. The channels between the cognitive users and the central node are considered to be additive white Ganssian noise (AWGN). Compared with traditional data fusion rules, the proposed D-S algorithm with credit scale provides a better detection performance.
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.