在传感器网络中,多个传感器对于同一目标的识别结果经常会发生冲突.本文采用基于D em pster-Shafer证据推理理论的数据融合方法来解决这一问题.然而,采用D-S证据组合公式计算融合结果,计算量过于巨大,对处理能力有限的感知结点来说负担...在传感器网络中,多个传感器对于同一目标的识别结果经常会发生冲突.本文采用基于D em pster-Shafer证据推理理论的数据融合方法来解决这一问题.然而,采用D-S证据组合公式计算融合结果,计算量过于巨大,对处理能力有限的感知结点来说负担过重,此外,计算所造成的延时也将严重影响系统的实时性和同步性.本文提出了一个基于矩阵分析的快速融合算法,该算法采用了D-S证据理论的思想,计算得到的融合结果与D-S证据组合公式计算得到的融合结果相同.本文用数学归纳法证明了这一结论.经过模拟实验验证,和直接采用D-S证据组合公式相比,该算法的计算量和所需的计算时间明显减少.展开更多
D S方法作为一种重要的处理不确定性问题的数据融合方法,已经广泛应用于各种数据融合系统中。解决D S融合公式在处理冲突证据时的失效问题一直是研究的热点。国内外的各种改进方法主要分为对融合公式的改进和对融合模型的改进2个方向。...D S方法作为一种重要的处理不确定性问题的数据融合方法,已经广泛应用于各种数据融合系统中。解决D S融合公式在处理冲突证据时的失效问题一直是研究的热点。国内外的各种改进方法主要分为对融合公式的改进和对融合模型的改进2个方向。对各种方法进行理论上和数据上的比较分析表明:修改模型的方式效果明显优于修改融合公式。展开更多
文摘在传感器网络中,多个传感器对于同一目标的识别结果经常会发生冲突.本文采用基于D em pster-Shafer证据推理理论的数据融合方法来解决这一问题.然而,采用D-S证据组合公式计算融合结果,计算量过于巨大,对处理能力有限的感知结点来说负担过重,此外,计算所造成的延时也将严重影响系统的实时性和同步性.本文提出了一个基于矩阵分析的快速融合算法,该算法采用了D-S证据理论的思想,计算得到的融合结果与D-S证据组合公式计算得到的融合结果相同.本文用数学归纳法证明了这一结论.经过模拟实验验证,和直接采用D-S证据组合公式相比,该算法的计算量和所需的计算时间明显减少.