Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through co...Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively.展开更多
Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is pre...Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms.展开更多
In the framework of the dinuclear system model,the synthesis mechanism of the superheavy nuclides with atomic numbers Z=112,114,115 in the reactions of projectiles 40,^(48)Ca bombarding on targets^(238)U,^(242)Pu,and^...In the framework of the dinuclear system model,the synthesis mechanism of the superheavy nuclides with atomic numbers Z=112,114,115 in the reactions of projectiles 40,^(48)Ca bombarding on targets^(238)U,^(242)Pu,and^(243)Am within a wide interval of incident energy has been investigated systematically.Based on the available experimental excitation functions,the dependence of calculated synthesis cross-sections on collision orientations has been studied thoroughly.The total kinetic energy(TKE)of these collisions with fixed collision orientation shows orientation dependence,which can be used to predict the tendency of kinetic energy diffusion.The TKE is dependent on incident energies,as discussed in this paper.We applied the method based on the Coulomb barrier distribution function in our calculations.This allowed us to approximately consider all the collision orientations from tip-tip to side-side.The calculations of excitation functions of^(48)Ca+^(238)U,^(48)Ca+242Pu,and^(48)Ca+^(243)Am are in good agreement with the available experimental data.The isospin effect of projectiles on production cross-sections of moscovium isotopes and the influence of the entrance channel effect on the synthesis cross-sections of superheavy nuclei are also discussed in this paper.The synthesis cross-section of new moscovium isotopes 278−286 Mc was predicted to be as large as hundreds of pb in the fusion-evaporation reactions of^(35,37)Cl+^(248)Cf,^(38,40)Ar+^(247)Bk,^(39,41)K+247 Cm,^(40,42,44,46)Ca+^(243)Am,45 Sc+^(244)Pu,and^(46,48,50)Ti+237Np,51 V+^(238)U at some typical excitation energies.展开更多
The laser fusion criterion is known as the ρR-Criterion, also called high-gain condition. This parameter is temperature dependent and can be calculated by R-matrix method. This method is applied for determining impro...The laser fusion criterion is known as the ρR-Criterion, also called high-gain condition. This parameter is temperature dependent and can be calculated by R-matrix method. This method is applied for determining improved fusion cross-section for the reactions T(d,n)4He, 3He(d,p)4He, D(d,p)T, D(d,n)3He. In this paper the time dependent reaction rate equations for fusion reaction T(d,n)4He are solved and by using the obtained results we computed the fu- sion power density, energy gain versus temperature and ρR-parameter. The obtained results show that a suitable com- bination may be a deuterium fraction fD=0.65 and fT=0.35 which would lead 30% reduction in the tritium content of the fuel mixture, and this choice would not change the energy gain value very much. Finally, the obtained energy gain for D-T reaction by using R-matrix is in good agreement with other theories.展开更多
The mechanism of decomposition of calcium inosilicate(CaSiO_3) synthesized through chemical deposition method using analytical reagent NaSiO_3·9H_2O and CaCl_2 during the alkali fusion process using NaOH was inve...The mechanism of decomposition of calcium inosilicate(CaSiO_3) synthesized through chemical deposition method using analytical reagent NaSiO_3·9H_2O and CaCl_2 during the alkali fusion process using NaOH was investigated by Raman spectroscopy in situ,X-ray diffraction and Fourier transform infrared spectrometer(FTIR).The results show that the tetrahedral silica chains within CaSiO_3 are gradually disrupted and transformed into nesosilicate with the isolated SiO_4 tetrahedra at the beginning of the alkali fusion process.The three intermediates including Ca_2SiO_4,Na_2CaSiO_4 and Na_2SiO_3 appear simultaneously in the decomposition of CaSiO_3,while the final products are Ca(OH)_2 and Na_4SiO_4.It can be concluded that there exist two reaction pathways in the alkali fusion process of CaSiO_3:one is ion exchange,the other is in the main form of the framework structure change of silicate.The reaction pathway is led by silicate structure transformation in the alkali fusion process.展开更多
Abstract The effects of mass asymmetry on the production of superheavy nuclei(SHN),within the dinuclear system model,are investigated in this study.It is observed that the fusion probability decreases with decreasing ...Abstract The effects of mass asymmetry on the production of superheavy nuclei(SHN),within the dinuclear system model,are investigated in this study.It is observed that the fusion probability decreases with decreasing mass asymmetry.A total of 192 possible combinations of projectiles from O to Ti and targets with half-lives longer than30 days for producing SHN^(264)Db,^(265)Db,^(267)Sg,^(268)Bh,268Sg,^(269)Bh,^(271)Hs,^(271)Mt,^(272)Hs,^(272)Mt,^(273)Mt,^(274)Ds,275Ds,^(275)Rg,^(276)Ds,^(276)Rg,^(277)Rg,^(278)Cn,^(279)Cn,and^(280)Cn are examined.Further,the optimal combinations and incident energies for synthesizing these nuclei are predicted.Most of the cross sections for production of SHNare larger than 10 pb;therefore,the process can be carried out with the available experimental equipment.展开更多
A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fu...A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of - 30 ps at the Shen Guang-Ⅲ (SG-Ⅲ) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion.展开更多
To validate neutronics calculation for the blanket design of fusion-fission hybrid reactor,experiments for measuring reaction rates inside two simulating assemblies are performed.Two benchmark assemblies were develope...To validate neutronics calculation for the blanket design of fusion-fission hybrid reactor,experiments for measuring reaction rates inside two simulating assemblies are performed.Two benchmark assemblies were developed for the neutronics experiments.A D-T fusion neutron source is placed at the center of the setup.One of them consists of three layers of depleted uranium shells and two layers of polyethylene shells,and these shells are arranged alternatively.The ^(238)U capture reaction rates are measured using depleted uranium foils and an HPGe gamma spectrometer.The fission reaction rates are measured using a fission chamber coated with depleted uranium.The other assembly consists of depleted uranium and LiH shells.The tritium production rates are measured using the lithium glass scintillation detector which is placed in the LiH region of the assembly.The measured reaction rates are compared with the calculated ones predicted using MCNP code,and C/E values are obtained.展开更多
Knowledge of actinides(n,f) fission process induced by neutron is of importance in the field of nuclear power and nuclear engineering,especially for reactor applications.In this work,fission characteristics of^(238)U(...Knowledge of actinides(n,f) fission process induced by neutron is of importance in the field of nuclear power and nuclear engineering,especially for reactor applications.In this work,fission characteristics of^(238)U(n,f) reaction induced by D-T neutron source were simulated with Geant4 code from multiple perspectives,including the fission production yields,total nubar,kinetic energy distribution,fission neutron spectrum and cumulative γ-ray spectrum of the fission products.The simulation results agree well with the experimental nuclear reaction data(EXFOR) and evaluated nuclear data(ENDF).Mainly,this work was to examine the rationality of the parametric nuclear fission model in Geant4 and to direct our future experimental measurements for the cumulative fission yields of ^(238)U(n,f) reaction.展开更多
Positive Q-value neutron transfer mediated sub-barrier fusion reactions are studied with an empirical coupled channels model, which takes into account neutron rearrangement related only to the dynamical matching condi...Positive Q-value neutron transfer mediated sub-barrier fusion reactions are studied with an empirical coupled channels model, which takes into account neutron rearrangement related only to the dynamical matching condition with no free parameters. Fusion cross sections of collision systems ^32S+^90,94,96Zr are calculated and analyzed. Logarithmic residual enhancement (LRE) is proposed to evaluate the discrepancy between calculated results and experimental data. The experimental data can be described well with this model for the first time as a whole, while the LRE analysis shows that there are still theoretical systematic deviations.展开更多
Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity ...Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail展开更多
Low energy nuclear reactions are possible in condensed matter because of image forces. They result from induced charges at the surface of metals or very polarizable media. The height and width of the Coulomb barrier i...Low energy nuclear reactions are possible in condensed matter because of image forces. They result from induced charges at the surface of metals or very polarizable media. The height and width of the Coulomb barrier in free space can thus be reduced. Nuclear fusion requires also the formation of a compound nucleus in one of its excited states, but two deuterons yield an α particle that has 2 excited states. They are respectively accessible at high or low energies. Since the reduction of the Coulomb barrier depends on the local curvature of the interface, cold fusion becomes autocatalytic, but heat production is controllable. Even microbes, plants and animals can produce transmutations. They are also due to image forces. This solves a basic problem in nuclear physics and there are possible applications: facilitated synthesis of superheavy elements and development of a new type of energy sources. They are moderate, but safe.展开更多
Fusion energy from protons reacting with ^(11) B,HB11,is extremely difficult or impossible when using thermal ignition by laser irradiation.This changes radically when using picosecond laser pulses with powers above p...Fusion energy from protons reacting with ^(11) B,HB11,is extremely difficult or impossible when using thermal ignition by laser irradiation.This changes radically when using picosecond laser pulses with powers above petawatts dominated by nonlinear force driven ultrahigh ac-celeration of plasma blocks for a non-thermal initiation of igniting solid density HB11 fuel.For a cylindrical trapping of the reaction,laser produced ultrahigh magnetic fields above kiloTesla,have to be combined.The experimentally confirmed highly increased HB11 fusion gains due to avalanche reaction may lead to a scheme of an environmentally clean and economic power reactor.展开更多
基金the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004).
文摘Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively.
基金supported by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004)the Guangxi Natural Science Foundation(No.2022GXNSFBA035549).
文摘Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms.
基金supported by National Natural Science Foundation of China (Nos. 12105241, 12175072)Natural Science Foundation of Jiangsu Province (No. BK20210788)+3 种基金Jiangsu Provincial Double-Innovation Doctoral Program (No. JSSCBS20211013)University Science Research Project of Jiangsu Province (No. 21KJB140026)Lv Yang Jin Feng (No. YZLYJFJH2021YXBS130)Key Laboratory of High Precision Nuclear Spectroscopy,Institute of Modern Physics,Chinese Academy of Sciences (No. IMPKFKT2021001)
文摘In the framework of the dinuclear system model,the synthesis mechanism of the superheavy nuclides with atomic numbers Z=112,114,115 in the reactions of projectiles 40,^(48)Ca bombarding on targets^(238)U,^(242)Pu,and^(243)Am within a wide interval of incident energy has been investigated systematically.Based on the available experimental excitation functions,the dependence of calculated synthesis cross-sections on collision orientations has been studied thoroughly.The total kinetic energy(TKE)of these collisions with fixed collision orientation shows orientation dependence,which can be used to predict the tendency of kinetic energy diffusion.The TKE is dependent on incident energies,as discussed in this paper.We applied the method based on the Coulomb barrier distribution function in our calculations.This allowed us to approximately consider all the collision orientations from tip-tip to side-side.The calculations of excitation functions of^(48)Ca+^(238)U,^(48)Ca+242Pu,and^(48)Ca+^(243)Am are in good agreement with the available experimental data.The isospin effect of projectiles on production cross-sections of moscovium isotopes and the influence of the entrance channel effect on the synthesis cross-sections of superheavy nuclei are also discussed in this paper.The synthesis cross-section of new moscovium isotopes 278−286 Mc was predicted to be as large as hundreds of pb in the fusion-evaporation reactions of^(35,37)Cl+^(248)Cf,^(38,40)Ar+^(247)Bk,^(39,41)K+247 Cm,^(40,42,44,46)Ca+^(243)Am,45 Sc+^(244)Pu,and^(46,48,50)Ti+237Np,51 V+^(238)U at some typical excitation energies.
文摘The laser fusion criterion is known as the ρR-Criterion, also called high-gain condition. This parameter is temperature dependent and can be calculated by R-matrix method. This method is applied for determining improved fusion cross-section for the reactions T(d,n)4He, 3He(d,p)4He, D(d,p)T, D(d,n)3He. In this paper the time dependent reaction rate equations for fusion reaction T(d,n)4He are solved and by using the obtained results we computed the fu- sion power density, energy gain versus temperature and ρR-parameter. The obtained results show that a suitable com- bination may be a deuterium fraction fD=0.65 and fT=0.35 which would lead 30% reduction in the tritium content of the fuel mixture, and this choice would not change the energy gain value very much. Finally, the obtained energy gain for D-T reaction by using R-matrix is in good agreement with other theories.
基金Project(20112120120003)supported by the Science and Technology Projects of Ministry of Education of ChinaProject(L2014120)supported by the Educational Commission of Liaoning Province,China
文摘The mechanism of decomposition of calcium inosilicate(CaSiO_3) synthesized through chemical deposition method using analytical reagent NaSiO_3·9H_2O and CaCl_2 during the alkali fusion process using NaOH was investigated by Raman spectroscopy in situ,X-ray diffraction and Fourier transform infrared spectrometer(FTIR).The results show that the tetrahedral silica chains within CaSiO_3 are gradually disrupted and transformed into nesosilicate with the isolated SiO_4 tetrahedra at the beginning of the alkali fusion process.The three intermediates including Ca_2SiO_4,Na_2CaSiO_4 and Na_2SiO_3 appear simultaneously in the decomposition of CaSiO_3,while the final products are Ca(OH)_2 and Na_4SiO_4.It can be concluded that there exist two reaction pathways in the alkali fusion process of CaSiO_3:one is ion exchange,the other is in the main form of the framework structure change of silicate.The reaction pathway is led by silicate structure transformation in the alkali fusion process.
基金supported by the National Natural Science Foundation of China under Grant No.11605296the Natural Science Foundation of Guangdong Province,China(Grant No.2016A030310208)the National Natural Science Foundation of China under Grant Nos.11875328,11405278 and 11605270
文摘Abstract The effects of mass asymmetry on the production of superheavy nuclei(SHN),within the dinuclear system model,are investigated in this study.It is observed that the fusion probability decreases with decreasing mass asymmetry.A total of 192 possible combinations of projectiles from O to Ti and targets with half-lives longer than30 days for producing SHN^(264)Db,^(265)Db,^(267)Sg,^(268)Bh,268Sg,^(269)Bh,^(271)Hs,^(271)Mt,^(272)Hs,^(272)Mt,^(273)Mt,^(274)Ds,275Ds,^(275)Rg,^(276)Ds,^(276)Rg,^(277)Rg,^(278)Cn,^(279)Cn,and^(280)Cn are examined.Further,the optimal combinations and incident energies for synthesizing these nuclei are predicted.Most of the cross sections for production of SHNare larger than 10 pb;therefore,the process can be carried out with the available experimental equipment.
基金Project supported by the National Natural Science Foundation of China(Grant No.10805041)the Science and Technology on Plasma Physics Laboratory,China(Grant No.9140C6801021001)the Science and Technology Development Foundation of China Academy of Engineering Physics,China(Grant No.2011B0102020)
文摘A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of - 30 ps at the Shen Guang-Ⅲ (SG-Ⅲ) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion.
基金supported by the National Special Magnetic Confinement Fusion Energy Research (No.2010GB111002),China
文摘To validate neutronics calculation for the blanket design of fusion-fission hybrid reactor,experiments for measuring reaction rates inside two simulating assemblies are performed.Two benchmark assemblies were developed for the neutronics experiments.A D-T fusion neutron source is placed at the center of the setup.One of them consists of three layers of depleted uranium shells and two layers of polyethylene shells,and these shells are arranged alternatively.The ^(238)U capture reaction rates are measured using depleted uranium foils and an HPGe gamma spectrometer.The fission reaction rates are measured using a fission chamber coated with depleted uranium.The other assembly consists of depleted uranium and LiH shells.The tritium production rates are measured using the lithium glass scintillation detector which is placed in the LiH region of the assembly.The measured reaction rates are compared with the calculated ones predicted using MCNP code,and C/E values are obtained.
基金supported by the National Natural Science Foundation of China(No.21327801)
文摘Knowledge of actinides(n,f) fission process induced by neutron is of importance in the field of nuclear power and nuclear engineering,especially for reactor applications.In this work,fission characteristics of^(238)U(n,f) reaction induced by D-T neutron source were simulated with Geant4 code from multiple perspectives,including the fission production yields,total nubar,kinetic energy distribution,fission neutron spectrum and cumulative γ-ray spectrum of the fission products.The simulation results agree well with the experimental nuclear reaction data(EXFOR) and evaluated nuclear data(ENDF).Mainly,this work was to examine the rationality of the parametric nuclear fission model in Geant4 and to direct our future experimental measurements for the cumulative fission yields of ^(238)U(n,f) reaction.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11635003,11025524,11161130520,11175218and U1332207the National Basic Research Program of China under Grant No 2010CB832903the European Commission's 7th Framework Programme(Fp7-PEOPLE-2010-IRSES)under Grant No 269131
文摘Positive Q-value neutron transfer mediated sub-barrier fusion reactions are studied with an empirical coupled channels model, which takes into account neutron rearrangement related only to the dynamical matching condition with no free parameters. Fusion cross sections of collision systems ^32S+^90,94,96Zr are calculated and analyzed. Logarithmic residual enhancement (LRE) is proposed to evaluate the discrepancy between calculated results and experimental data. The experimental data can be described well with this model for the first time as a whole, while the LRE analysis shows that there are still theoretical systematic deviations.
基金Supported by the International Thermonuclear Experimental Reactor Project of China under Grant No 2013GB114003the National Natural Science Foundation of China under Grant No 11275135
文摘Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail
文摘Low energy nuclear reactions are possible in condensed matter because of image forces. They result from induced charges at the surface of metals or very polarizable media. The height and width of the Coulomb barrier in free space can thus be reduced. Nuclear fusion requires also the formation of a compound nucleus in one of its excited states, but two deuterons yield an α particle that has 2 excited states. They are respectively accessible at high or low energies. Since the reduction of the Coulomb barrier depends on the local curvature of the interface, cold fusion becomes autocatalytic, but heat production is controllable. Even microbes, plants and animals can produce transmutations. They are also due to image forces. This solves a basic problem in nuclear physics and there are possible applications: facilitated synthesis of superheavy elements and development of a new type of energy sources. They are moderate, but safe.
文摘Fusion energy from protons reacting with ^(11) B,HB11,is extremely difficult or impossible when using thermal ignition by laser irradiation.This changes radically when using picosecond laser pulses with powers above petawatts dominated by nonlinear force driven ultrahigh ac-celeration of plasma blocks for a non-thermal initiation of igniting solid density HB11 fuel.For a cylindrical trapping of the reaction,laser produced ultrahigh magnetic fields above kiloTesla,have to be combined.The experimentally confirmed highly increased HB11 fusion gains due to avalanche reaction may lead to a scheme of an environmentally clean and economic power reactor.