Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b...Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.展开更多
Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this pape...Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this paper,an Archimedean copula is chosen to describe the dependence in a constant-stress accelerated life test.We study the Archimedean copula based dependent competing risks model using parametric and nonparametric methods.The parametric likelihood inference is presented by deriving the general expression of likelihood function based on assumed survival Archimedean copula associated with the model parameter estimation.Combining the nonparametric estimation with progressive censoring and the non-parametric copula estimation,we introduce a nonparametric reliability estimation method given competing risks data.A simulation study and a real data analysis are conducted to show the performance of the estimation methods.展开更多
地震动常被拆解为两个水平向分量(x、y)和一个竖向分量(z)。为探寻Copula模型在多维地震动参数相关性分析中的应用可行性,从太平洋工程抗震研究中心选取1500组实测地震动,并从强度、持时和频谱3个方面筛选出12组地震动参数用于表征分析...地震动常被拆解为两个水平向分量(x、y)和一个竖向分量(z)。为探寻Copula模型在多维地震动参数相关性分析中的应用可行性,从太平洋工程抗震研究中心选取1500组实测地震动,并从强度、持时和频谱3个方面筛选出12组地震动参数用于表征分析地震动不同向分量间的相关性。首先,计算得到u-v(u、v为地震动两个水平向分量和一个竖向分量中的任意两个分量,u、v=x,y,z)向分量间12组地震动参数的Pearson线性相关系数、Kendall秩相关系数和Spearman秩相关系数。其次,结合柯尔莫哥洛夫-斯米尔诺夫(Kolmogorov-Smirnov,K-S)检验和贝叶斯信息准则(the Bayesian information criteria,BIC)建立了12组地震动参数在x、y、z向分量上的最优概率模型。最后,利用BIC准则确定了u-v向分量间地震动参数的最优Copula函数,建立了u-v向分量间12组地震动参数的联合概率函数。结果表明:12组地震动参数相关性较好,但反应谱峰值对应周期参数在u-v向分量间的相关性和阿里亚斯强度参数在x-z向、y-z向分量间的相关性较低;通过Copula理论可以较为精准的建立u-v向分量间地震动参数的联合概率函数;在给定u向分量地震动参数条件下,得到的Copula条件均值和条件随机数能够用于v向分量地震动参数预测。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52109010)the Postdoctoral Science Foundation of China(Grant No.2021M701047)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200113).
文摘Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
基金Supported by the National Natural Science Foundation of China(12101476,12061091,11901134)the Fundamental Research Funds for the Central Universities(ZYTS23054,QTZX22054)+1 种基金the Yunnan Funda-mental Research Projects(202101AT070103)the Natural Science Basic Research Program of Shaanxi Province(2020JQ-285).
文摘Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this paper,an Archimedean copula is chosen to describe the dependence in a constant-stress accelerated life test.We study the Archimedean copula based dependent competing risks model using parametric and nonparametric methods.The parametric likelihood inference is presented by deriving the general expression of likelihood function based on assumed survival Archimedean copula associated with the model parameter estimation.Combining the nonparametric estimation with progressive censoring and the non-parametric copula estimation,we introduce a nonparametric reliability estimation method given competing risks data.A simulation study and a real data analysis are conducted to show the performance of the estimation methods.
文摘地震动常被拆解为两个水平向分量(x、y)和一个竖向分量(z)。为探寻Copula模型在多维地震动参数相关性分析中的应用可行性,从太平洋工程抗震研究中心选取1500组实测地震动,并从强度、持时和频谱3个方面筛选出12组地震动参数用于表征分析地震动不同向分量间的相关性。首先,计算得到u-v(u、v为地震动两个水平向分量和一个竖向分量中的任意两个分量,u、v=x,y,z)向分量间12组地震动参数的Pearson线性相关系数、Kendall秩相关系数和Spearman秩相关系数。其次,结合柯尔莫哥洛夫-斯米尔诺夫(Kolmogorov-Smirnov,K-S)检验和贝叶斯信息准则(the Bayesian information criteria,BIC)建立了12组地震动参数在x、y、z向分量上的最优概率模型。最后,利用BIC准则确定了u-v向分量间地震动参数的最优Copula函数,建立了u-v向分量间12组地震动参数的联合概率函数。结果表明:12组地震动参数相关性较好,但反应谱峰值对应周期参数在u-v向分量间的相关性和阿里亚斯强度参数在x-z向、y-z向分量间的相关性较低;通过Copula理论可以较为精准的建立u-v向分量间地震动参数的联合概率函数;在给定u向分量地震动参数条件下,得到的Copula条件均值和条件随机数能够用于v向分量地震动参数预测。