To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions...To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.展开更多
Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model compl...Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.展开更多
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor...An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.展开更多
The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying L...The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.展开更多
Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appea...Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appearance variations. A multiple template method to track fast motion target with appearance changes is presented under the framework of appearance model with Kalman filter. Firstly, we construct a multiple template appearance model, which includes both the original template and templates affinely transformed from original one. Generally speaking, appearance variations of fast motion target can be covered by affine transformation. Therefore, the affine tr templates match the target of appearance variations better than conventional models. Secondly, we present an improved Kalman filter for approx- imate estimating the motion trail of the target and a modified similarity evaluation function for exact matching. The estimation approach can reduce time complexity of the algorithm and keep accuracy in the meantime. Thirdly, we propose an adaptive scheme for updating template set to alleviate the drift problem. The scheme considers the following differences: the weight differences in two successive frames; different types of affine transformation applied to templates. Finally, experiments demonstrate that the proposed algorithm is robust to appearance varia- tion of fast motion target and achieves real-time performance on middle/low-range computing platform.展开更多
To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction alg...To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction algorithm and the motion tracking process using this algorithm. The algorithm uses only luminance components of sampled image sequence pixels and models every pixel in a statistical model. The algorithm is characterized by its ability of real time detecting sudden lighting changes, and extracting and tracking motion objects faster. It is shown that our algorithm can be realized with lower time and space complexity and adjustable object detection error rate with comparison to other background subtraction algorithms. Making use of the algorithm, an indoor monitoring system is also worked out and the motion tracking process is presented in this paper. Experimental results testify the algorithm's good performances when used in an indoor monitoring system.展开更多
The development of artificial intelligence technology has promoted the rapid improvement of human-computer interaction. This system uses the Kinect visual image sensor to identify human bone data and complete the reco...The development of artificial intelligence technology has promoted the rapid improvement of human-computer interaction. This system uses the Kinect visual image sensor to identify human bone data and complete the recognition of the operator’s movements. Through the filtering process of real-time data by the host computer platform with computer software as the core, the algorithm is programmed to realize the conversion from data to control signals. The system transmits the signal to the lower computer platform with Arduino as the core through the transmission mode of the serial communication, thereby completing the control of the steering gear. In order to verify the feasibility of the theory, the team built a 4-DOF robotic arm control system and completed software development. It can display other functions such as the current bone angle and motion status in real time on the computer operation interface. The experimental data shows that the Kinect-based motion recognition method can effectively complete the tracking of the expected motion and complete the grasping and transfer of the specified objects, which has extremely high operability.展开更多
The aim of this study is to propose a novel system that has an ability to detect intra-fractional motion during radiotherapy treatment in real-time using three-dimensional surface taken by a depth camera, Microsoft Ki...The aim of this study is to propose a novel system that has an ability to detect intra-fractional motion during radiotherapy treatment in real-time using three-dimensional surface taken by a depth camera, Microsoft Kinect v1. Our approach introduces three new aspects for three-dimensional surface tracking in radiotherapy treatment. The first aspect is a new algorithm for noise reduction of depth values. Ueda’s algorithm was implemented and enabling a fast least square regression of depth values. The second aspect is an application for detection of patient’s motion at multiple points in thracoabdominal regions. The third aspect is an estimation of three-dimensional surface from multiple depth values. For evaluation of noise reduction by Ueda’s algorithm, two respiratory patterns are measured by the Kinect as well as a laser range meter. The resulting cross correlation coefficients between the laser range meter and the Kinect were 0.982 for abdominal respiration and 0.995 for breath holding. Moreover, the mean cross correlation coefficients between the signals of our system and the signals of Anzai with respect to participant’s respiratory motion were 0.90 for thoracic respiration and 0.93 for abdominal respiration, respectively. These results proved that the performance of the developed system was comparable to existing motion monitoring devices. Reconstruction of three-dimensional surface also enabled us to detect the irregular motion and breathing arrest by comparing the averaged depth with predefined threshold values.展开更多
Based on previous achievements,a dynamic pressure-sinkage equation for saturated clay is established.First,aquasi-static penetration rate is selected,and the ratio of the dynamic penetration rate to the quasi-static r...Based on previous achievements,a dynamic pressure-sinkage equation for saturated clay is established.First,aquasi-static penetration rate is selected,and the ratio of the dynamic penetration rate to the quasi-static rate is used to characterize the degree of dynamic effect,then theβth power of the ratio is used to quantify the dynamic effect of sinkage.The dynamic effect exponentβis obtained using penetration tests with different penetration rates.Then,a dynamic motion resistance equation for a tracked vehicle is established based on the dynamic pressure-sinkage equation.The equation incorporates both penetration and bulldozing resistance.Finally,a series of simulation experiments with varying travel speeds and slip rates is carried out.The results show that an increase in the speed leads to stronger terrain stiffness,resulting in a decrease in sinkage and motion resistance.However,the enhancement effect becomes weaker with an increase in the travel speed.展开更多
To extract the track parameters of a traffic object in traffic video and identify its motion behavior,a new method is proposed based on CamShift(Continuously Adaptive Mean Shift)and HMM(Hidden Markov Model).First,an o...To extract the track parameters of a traffic object in traffic video and identify its motion behavior,a new method is proposed based on CamShift(Continuously Adaptive Mean Shift)and HMM(Hidden Markov Model).First,an object entering the video scene is located and tracked by the CamShift based algorithm,then its track parameters are obtained.Next,the track parameters are processed to form the observation sequence of HMM,and the motion behavior modeling and probability evaluation are implemented based on HMM.At last,the behavior identification and behavior statistics of the tracked traffic object in video are achieved.Experiments show that this method can be used to sort and recognize the motion behavior of the traffic object by its corresponding behavior track,and to do some statistics or corresponding process schemes.展开更多
Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or em...Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or embedded in the substrate underneath the cell.The former measures rheological properties of the cell such as cell stiffness,and the latter measures cell traction force dynamics.Here we describe the principles of these two cell mechanics research tools and an example of using them to study physical behaviors of the living cell in response to transient stretch or compression.We demonstrate that,when subjected to a stretchunstretch manipulation,both the stiffness and traction force of adherent cells promptly reduced,and then gradually recover up to the level prior to the stretch.Immunofluorescent staining and Western blotting results indicate that the actin cytoskeleton of the cells underwent a corresponding disruption and reassembly process almost in step with the changes of cell mechanics.Interestingly,when subjected to compression,the cells did not show such particular behaviors.Taken together,we conclude that adherent cells are very sensitive to the transient stretch but not transient compression,and the stretch-induced cell response is due to the dynamics of actin polymerization.展开更多
A visible magnified and simulated nozzle was designed and installed on a winding machine according to the similarity principle of Reynolds number, to study the yarn motion track in hairiness-reducing nozzle. High-spee...A visible magnified and simulated nozzle was designed and installed on a winding machine according to the similarity principle of Reynolds number, to study the yarn motion track in hairiness-reducing nozzle. High-speed photography was used to observe the yam instantaneous motion state in the nozzle. The results show that the yarn motion track seems to be a cylindrical helix which is close to inner wall in the twisting chamber and kept the same with different technical parameters, such as diameter of the twisting chamber and jet pressure in orifices. According to simulation results and reasonable simplification, the motion track equation and the rotational equation of the yarn could be derived. The velocity of the swirl and hairiness is faster than that of the yarn balloon, so there is enough time for hairiness to be wrapped into the main body of yarn and hence the hairiness is reduced.展开更多
Evidence⁃based practices of public health will benefit from quantification of passive physical activity assessment.This study aims to investigate the reliability of marker⁃free system(MFS)such as Microsoft Kinect in m...Evidence⁃based practices of public health will benefit from quantification of passive physical activity assessment.This study aims to investigate the reliability of marker⁃free system(MFS)such as Microsoft Kinect in measuring upper extremity motion from different angles.Ten healthy participants performed elbow and shoulder extension/flexion along frontal and median anatomical planes for ten pace⁃controlled repetitions,during which the spatiotemporal positions of upper extremity joints were concurrently recorded by two sensors from 0°and 45°viewing angles.Reliability between the two sensors were evaluated using Pearson correlation coefficient,intra⁃class correlation coefficients,and 95%limits of agreement and coefficient of variation.Worse reliability was observed when possibility of occlusion was higher.However,better reliability was found when longer observation interval(10 s)was used as elementary measuring unit than shorter observation interval(2 s).The overall angular reliability of activity as displacement or changes in angle was not satisfactory.The results are expected to inform the industry for the extension of MFS to clinic applications.展开更多
To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the para...To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the parallel-track BiSAR system can not remain invariant in an aperture,an actual aperture is divided into subapertures so that it is reasonable to assume that the aircrafts move with constant acceleration vector in a subaperture.Based on this model,an improved CSA is derived.The new phase factors incorporate three-dimensional acceleration and velocity.The motion compensation procedure is integrated into the CSA without additional operation required.The simulation results show that the presented algorithm can efficiently resolve motion compensation for parallel-track BiSAR.展开更多
基金supported by the Natural Science Foundation of Hainan Province(Grant No.520LH015)the Fundamental Research Funds for the Central Universities and the Major Projects of Strategic Emerging Industries in Shanghai(Grant No.BH3230001).
文摘To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.
基金the National Natural Science Foundation of China,Grant/Award Number:62006065the Science and Technology Research Program of Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634+1 种基金the Natural Science Foundation of Chongqing,Grant/Award Number:CSTB2022NSCQ‐MSX1202Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634。
文摘Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.
文摘An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.
文摘The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.
基金Supported by the National Science Foundation of China(61472289)Hubei Province Science Foundation(2015CFB254)
文摘Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appearance variations. A multiple template method to track fast motion target with appearance changes is presented under the framework of appearance model with Kalman filter. Firstly, we construct a multiple template appearance model, which includes both the original template and templates affinely transformed from original one. Generally speaking, appearance variations of fast motion target can be covered by affine transformation. Therefore, the affine tr templates match the target of appearance variations better than conventional models. Secondly, we present an improved Kalman filter for approx- imate estimating the motion trail of the target and a modified similarity evaluation function for exact matching. The estimation approach can reduce time complexity of the algorithm and keep accuracy in the meantime. Thirdly, we propose an adaptive scheme for updating template set to alleviate the drift problem. The scheme considers the following differences: the weight differences in two successive frames; different types of affine transformation applied to templates. Finally, experiments demonstrate that the proposed algorithm is robust to appearance varia- tion of fast motion target and achieves real-time performance on middle/low-range computing platform.
文摘To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction algorithm and the motion tracking process using this algorithm. The algorithm uses only luminance components of sampled image sequence pixels and models every pixel in a statistical model. The algorithm is characterized by its ability of real time detecting sudden lighting changes, and extracting and tracking motion objects faster. It is shown that our algorithm can be realized with lower time and space complexity and adjustable object detection error rate with comparison to other background subtraction algorithms. Making use of the algorithm, an indoor monitoring system is also worked out and the motion tracking process is presented in this paper. Experimental results testify the algorithm's good performances when used in an indoor monitoring system.
文摘The development of artificial intelligence technology has promoted the rapid improvement of human-computer interaction. This system uses the Kinect visual image sensor to identify human bone data and complete the recognition of the operator’s movements. Through the filtering process of real-time data by the host computer platform with computer software as the core, the algorithm is programmed to realize the conversion from data to control signals. The system transmits the signal to the lower computer platform with Arduino as the core through the transmission mode of the serial communication, thereby completing the control of the steering gear. In order to verify the feasibility of the theory, the team built a 4-DOF robotic arm control system and completed software development. It can display other functions such as the current bone angle and motion status in real time on the computer operation interface. The experimental data shows that the Kinect-based motion recognition method can effectively complete the tracking of the expected motion and complete the grasping and transfer of the specified objects, which has extremely high operability.
文摘The aim of this study is to propose a novel system that has an ability to detect intra-fractional motion during radiotherapy treatment in real-time using three-dimensional surface taken by a depth camera, Microsoft Kinect v1. Our approach introduces three new aspects for three-dimensional surface tracking in radiotherapy treatment. The first aspect is a new algorithm for noise reduction of depth values. Ueda’s algorithm was implemented and enabling a fast least square regression of depth values. The second aspect is an application for detection of patient’s motion at multiple points in thracoabdominal regions. The third aspect is an estimation of three-dimensional surface from multiple depth values. For evaluation of noise reduction by Ueda’s algorithm, two respiratory patterns are measured by the Kinect as well as a laser range meter. The resulting cross correlation coefficients between the laser range meter and the Kinect were 0.982 for abdominal respiration and 0.995 for breath holding. Moreover, the mean cross correlation coefficients between the signals of our system and the signals of Anzai with respect to participant’s respiratory motion were 0.90 for thoracic respiration and 0.93 for abdominal respiration, respectively. These results proved that the performance of the developed system was comparable to existing motion monitoring devices. Reconstruction of three-dimensional surface also enabled us to detect the irregular motion and breathing arrest by comparing the averaged depth with predefined threshold values.
基金Supported by the National Natural Science Foundation of China(51005018)
文摘Based on previous achievements,a dynamic pressure-sinkage equation for saturated clay is established.First,aquasi-static penetration rate is selected,and the ratio of the dynamic penetration rate to the quasi-static rate is used to characterize the degree of dynamic effect,then theβth power of the ratio is used to quantify the dynamic effect of sinkage.The dynamic effect exponentβis obtained using penetration tests with different penetration rates.Then,a dynamic motion resistance equation for a tracked vehicle is established based on the dynamic pressure-sinkage equation.The equation incorporates both penetration and bulldozing resistance.Finally,a series of simulation experiments with varying travel speeds and slip rates is carried out.The results show that an increase in the speed leads to stronger terrain stiffness,resulting in a decrease in sinkage and motion resistance.However,the enhancement effect becomes weaker with an increase in the travel speed.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2004AA742209)
文摘To extract the track parameters of a traffic object in traffic video and identify its motion behavior,a new method is proposed based on CamShift(Continuously Adaptive Mean Shift)and HMM(Hidden Markov Model).First,an object entering the video scene is located and tracked by the CamShift based algorithm,then its track parameters are obtained.Next,the track parameters are processed to form the observation sequence of HMM,and the motion behavior modeling and probability evaluation are implemented based on HMM.At last,the behavior identification and behavior statistics of the tracked traffic object in video are achieved.Experiments show that this method can be used to sort and recognize the motion behavior of the traffic object by its corresponding behavior track,and to do some statistics or corresponding process schemes.
文摘Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or embedded in the substrate underneath the cell.The former measures rheological properties of the cell such as cell stiffness,and the latter measures cell traction force dynamics.Here we describe the principles of these two cell mechanics research tools and an example of using them to study physical behaviors of the living cell in response to transient stretch or compression.We demonstrate that,when subjected to a stretchunstretch manipulation,both the stiffness and traction force of adherent cells promptly reduced,and then gradually recover up to the level prior to the stretch.Immunofluorescent staining and Western blotting results indicate that the actin cytoskeleton of the cells underwent a corresponding disruption and reassembly process almost in step with the changes of cell mechanics.Interestingly,when subjected to compression,the cells did not show such particular behaviors.Taken together,we conclude that adherent cells are very sensitive to the transient stretch but not transient compression,and the stretch-induced cell response is due to the dynamics of actin polymerization.
基金Tianjin Science and Technology Planning Projects,China(No.04310471)
文摘A visible magnified and simulated nozzle was designed and installed on a winding machine according to the similarity principle of Reynolds number, to study the yarn motion track in hairiness-reducing nozzle. High-speed photography was used to observe the yam instantaneous motion state in the nozzle. The results show that the yarn motion track seems to be a cylindrical helix which is close to inner wall in the twisting chamber and kept the same with different technical parameters, such as diameter of the twisting chamber and jet pressure in orifices. According to simulation results and reasonable simplification, the motion track equation and the rotational equation of the yarn could be derived. The velocity of the swirl and hairiness is faster than that of the yarn balloon, so there is enough time for hairiness to be wrapped into the main body of yarn and hence the hairiness is reduced.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51708152)the Science and Technology Innovation Committee of Shenzhen Municipality(Grant No.JCYJ20170811155435737).
文摘Evidence⁃based practices of public health will benefit from quantification of passive physical activity assessment.This study aims to investigate the reliability of marker⁃free system(MFS)such as Microsoft Kinect in measuring upper extremity motion from different angles.Ten healthy participants performed elbow and shoulder extension/flexion along frontal and median anatomical planes for ten pace⁃controlled repetitions,during which the spatiotemporal positions of upper extremity joints were concurrently recorded by two sensors from 0°and 45°viewing angles.Reliability between the two sensors were evaluated using Pearson correlation coefficient,intra⁃class correlation coefficients,and 95%limits of agreement and coefficient of variation.Worse reliability was observed when possibility of occlusion was higher.However,better reliability was found when longer observation interval(10 s)was used as elementary measuring unit than shorter observation interval(2 s).The overall angular reliability of activity as displacement or changes in angle was not satisfactory.The results are expected to inform the industry for the extension of MFS to clinic applications.
文摘To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the parallel-track BiSAR system can not remain invariant in an aperture,an actual aperture is divided into subapertures so that it is reasonable to assume that the aircrafts move with constant acceleration vector in a subaperture.Based on this model,an improved CSA is derived.The new phase factors incorporate three-dimensional acceleration and velocity.The motion compensation procedure is integrated into the CSA without additional operation required.The simulation results show that the presented algorithm can efficiently resolve motion compensation for parallel-track BiSAR.