期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
关于Lehmer D H问题及其推广 被引量:8
1
作者 张文鹏 《西北大学学报(自然科学版)》 CAS CSCD 1993年第2期103-108,共6页
对奇数q≥3,设r(q)表示同余方程x·x≡1(modq),1≤x,x≤q—1且满足x和x具有相反奇偶性的解的个数。主要目的是给出r(q)的一种三角和表示式,从而推出r(q)的一个较强的渐近公式。
关键词 渐近公式 同余方程 LEHMER问题
下载PDF
一阶线性椭圆型偏微分方程组的R-H-DH-D^2H复合边值问题
2
作者 田大增 孟俊霞 +1 位作者 高红亚 李子植 《宁夏大学学报(自然科学版)》 CAS 北大核心 2006年第2期132-136,共5页
研究了一阶线性椭圆型偏微分方程组的边界条件中含有二阶偏导数的R-H-DH-D2H复合边值问题,利用消去法将该问题化为等价的广义解析向量的Hilbert边值问题,并利用奇异积分方程组理论给出了问题的可解性条件.
关键词 椭圆型方程组 R-H-DH-D^2H复合边值问题 奇异积分方程组 广义解析向量函数
下载PDF
与D、H、Lebmer问题有关的一个问题
3
作者 张建康 《西安邮电学院学报》 1996年第1期27-31,共5页
设p为奇素数,用G(P)表示同余方程:满足条件1≤x,x是p的原根且x与具有相反的奇偶性的解数,本文给出了G(p)的一个比较精确的渐近公式.
关键词 素数 LEHMER问题 同余方程
下载PDF
一阶线性椭圆型偏微方程组的R-DR-D^2R-H-DH-D^2H复合边值问题
4
作者 田大增 《保定师范专科学校学报》 2006年第2期1-5,14,共6页
研究了一阶线性椭圆型偏微分方程组的边界条件中含有二阶偏导数的RD-RD-2RH-D-HD-2H复合边值问题,利用消去法将其化为等价的广义解析向量的Hilbert边值问题,并利用奇异积分方程组的理论给出了问题的可解性条件.
关键词 椭圆型方程组 R-DR-D^2R-H-DH-D^2H复合边值问题 奇异积分方程组 广义解析向量函数
下载PDF
二次剩余及其相关问题
5
作者 武胜利 《宝鸡文理学院学报(自然科学版)》 CAS 1997年第3期17-19,27,共4页
通过克拉斯特曼和的估计和三角和转换,对二次剩余短区间情形的莱玛问题给出了渐近公式。
关键词 二次剩余 莱玛问题 同余方程 渐近公式
下载PDF
关于短区间的并集中D.H.Lehmer问题的一个推广
6
作者 王晓瑛 曹艳梅 《数学杂志》 2019年第3期379-386,共8页
本文研究了短区间的并集中的D. H. Lehmer问题.利用不完全Kloosterman和的均值定理,给出了D. H. Lehmer问题的渐近公式,从而推广了短区间的D. H. Lehmer问题.
关键词 D.H.Lehmer问题 不完全Kloosterman和 短区间
下载PDF
On the Generalization of the D.H.Lehmer Problem 被引量:2
7
作者 Ya Ming LU Yuan YI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第8期1269-1274,共6页
Let n ≥ 2 be a fixed positive integer, q ≥ 3 and c be two integers with (n, q) = (c, q) = 1. We denote by rn(51, 52, C; q) (δ 〈 δ1,δ2≤ 1) the number of all pairs of integers a, b satisfying ab ≡ c(mo... Let n ≥ 2 be a fixed positive integer, q ≥ 3 and c be two integers with (n, q) = (c, q) = 1. We denote by rn(51, 52, C; q) (δ 〈 δ1,δ2≤ 1) the number of all pairs of integers a, b satisfying ab ≡ c(mod q), 1 〈 a ≤δ1q, 1 ≤ b≤δ2q, (a,q) = (b,q) = 1 and nt(a+b). The main purpose of this paper is to study the asymptotic properties of rn (δ1, δ2, c; q), and give a sharp asymptotic formula for it. 展开更多
关键词 D. H. Lehmer problem Gauss sum Kloosterman sum
原文传递
ON THE D.H.LEHMER PROBLEM 被引量:2
8
作者 张文鹏 《Chinese Science Bulletin》 SCIE EI CAS 1992年第21期1765-1769,共5页
Ⅰ. INTRODUCTION For each x(0【x【p) where p is an odd prime, we define (?) by (?)x ≡1 (mod p) and0【(?)【p. Let r(p)be the number of cases in which x and x are of opposite parity, e. g. forp=13, (x,x)=(1, 1),(2, 7),... Ⅰ. INTRODUCTION For each x(0【x【p) where p is an odd prime, we define (?) by (?)x ≡1 (mod p) and0【(?)【p. Let r(p)be the number of cases in which x and x are of opposite parity, e. g. forp=13, (x,x)=(1, 1),(2, 7), (3,9), (4, 10), (5, 8), (6, 11), (12, 12), so r(13)=6. D.H. Lehmer wanted to find r(p) or at least to say something nontrivial about it. r(p)≡2 or 0 (mod 4) accordingas p≡±1 (mod 4). r(3)=r(7)=0;r(5)=2;r(11) 展开更多
关键词 PRIME CONGRUENCE EQUATION D.H. Lehmer problem
原文传递
High-dimensional D.H.Lehmer Problem over Short Intervals 被引量:1
9
作者 Zhe Feng XU Tian Ping ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第2期213-228,共16页
Letk be a positive integer and n a nonnegative integer,0 〈 λ1,...,λk+1 ≤ 1 be real numbers and w =(λ1,λ2,...,λk+1).Let q ≥ max{[1/λi ]:1 ≤ i ≤ k + 1} be a positive integer,and a an integer coprime to ... Letk be a positive integer and n a nonnegative integer,0 〈 λ1,...,λk+1 ≤ 1 be real numbers and w =(λ1,λ2,...,λk+1).Let q ≥ max{[1/λi ]:1 ≤ i ≤ k + 1} be a positive integer,and a an integer coprime to q.Denote by N(a,k,w,q,n) the 2n-th moment of(b1··· bk c) with b1··· bk c ≡ a(mod q),1 ≤ bi≤λiq(i = 1,...,k),1 ≤ c ≤λk+1 q and 2(b1+ ··· + bk + c).We first use the properties of trigonometric sum and the estimates of n-dimensional Kloosterman sum to give an interesting asymptotic formula for N(a,k,w,q,n),which generalized the result of Zhang.Then we use the properties of character sum and the estimates of Dirichlet L-function to sharpen the result of N(a,k,w,q,n) in the case ofw =(1/2,1/2,...,1/2) and n = 0.In order to show our result is close to the best possible,the mean-square value of N(a,k,q) φk(q)/2k+2and the mean value weighted by the high-dimensional Cochrane sum are studied too. 展开更多
关键词 D. H. Lehmer problem short intervals trigonometric sum character sum Cochrane sum
原文传递
On a Problem of D.H.Lehmer and General Kloosterman Sums
10
作者 WenPengZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第3期515-524,共10页
Let q ≥ 3 be an odd number, a be any fixed positive integer with (a, q) = 1. For each integer b with 1 ≤ b < q and (b, q) = 1, it is clear that there exists one and only one c with 0 < c < q such that bc ≡... Let q ≥ 3 be an odd number, a be any fixed positive integer with (a, q) = 1. For each integer b with 1 ≤ b < q and (b, q) = 1, it is clear that there exists one and only one c with 0 < c < q such that bc ≡ a (mod q). Let N(a, q) denote the number of all solutions of the congruent equation bc ≡ a (mod q) for 1 ≤ b, c < q in which b and c are of opposite parity, and let . The main purpose of this paper is to study the distribution properties of E(a, q), and give a sharper hybrid mean-value formula involving E(a, q) and general Kloosterman sums. 展开更多
关键词 A problem of D. H. Lehmer Error term Hybrid mean value formula
原文传递
Kloosterman Sums and a Problem of D.H.Lehmer
11
作者 Ping XI Yuan YI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2020年第3期361-370,共10页
A classical problem of D. H. Lehmer suggests the study of distributions of elements of Z/pZ of opposite parity to the multiplicative inverse mod p. Zhang initiated this problem and found an asymptotic evaluation of th... A classical problem of D. H. Lehmer suggests the study of distributions of elements of Z/pZ of opposite parity to the multiplicative inverse mod p. Zhang initiated this problem and found an asymptotic evaluation of the number of such elements. In this paper, an asymptotic formula for the fourth moment of the error term of Zhang is proved,from which one may see that Zhang’s error term is optimal up to the logarithm factor.The method also applies to the case of arbitrary positive integral moments. 展开更多
关键词 D.H.Lehmer problem Kloosterman sum MOMENT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部