Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partia...Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partially mitigate the magnitudes and consequences of such catastrophic events.We selected a rock avalanche in Nayong County,Guizhou Province,China as a case to study the effect of the location and height of a retaining wall on the dynamic characteristics of rock avalanche by using both actual terrain-based laboratory-model tests and coupled PFC3D-FLAC3D numerical simulations.Our findings demonstrate that a retaining wall can largely block a rock avalanche and its protective efficacy is significantly influenced by the integrity of the retaining wall.Coupled numerical simulation can serve as a powerful tool for analyzing the interaction between a rock avalanche and a retaining wall,facilitating precise observations of its deformation and destruction.The impact-curve characteristics of the retaining wall depend upon whether or not the rock avalanche-induced destruction is taken into account.The location of the retaining wall exerts a greater influence on the outcome compared to the height and materials of the retaining wall,while implementing a stepped retaining-wall pattern in accordance with the terrain demonstrates optimal efficacy in controlling rock avalanche.展开更多
A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are consi...A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are considered with applying hot temperature at the left surface(collector) of the Trombe wall.The left wall(glazing) of the room and a square part(window) at the right wall are considered at cold temperature.The effects of Rayleigh number and the nanofluid volume fractions and the Trombe wall height on the temperature field,flow structure and heat transfer rate,are studied.The results show that the addition of nanoparticles and the increase of the Trombe wall height,enhance the heat transfer considerably and affect the flow structure and the temperature field.展开更多
A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed w...A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.展开更多
Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving th...Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving the three-dimensional(3 D)highly conductive hierarchically interconnected nanoporous web by threading microporous metal organic framework MIL-68(Al)crystals onto multi-walled carbon nanotubes(MWCNTs).Such 3 D hierarchically nanoporous web(3 D MIL-68(Al)@MWCNTs web)with a very high surface area,a large amount of micropores,electrical conductivity and elasticity strongly traps the soluble polyselenides during the electrochemical reaction and significantly facilitates lithium ion diffusion and electron transportation.Molecular dynamic calculation confirmed the strong affinity of MIL-68(Al)for the adsorption of polyselenides,quite suitable for Li-Se battery.Their hexahedral channels(1.56 nm)are more efficient for the confinement of polyselenides and for the diffusion of electrolytes compared to their smaller triangular channels(0.63 nm).All these excellent characteristics of 3 D MIL-68(Al)@MWCNTs web with suitable confinement of a large amount of selenium and the conductive linkage between MIL-68(Al)host by MWCNTs result in a high capacity of 453 m Ah/g at 0.2 C with 99.5%coulombic efficiency after 200 cycles with significantly improved cycle stability and rate performance.The 3 D MIL-68(Al)@MWCNTs web presents a good performance in Li-Se battery in term of the specific capacity and cycling stability and also in terms of rate performance compared with all the metal-organic framework(MOF)based or MOF derived porous carbons used in Li-Se battery.展开更多
It is well known that the generation of excess pore water pressure and/or liquefaction in foundation soils during an earthquake often cause structural failures.This paper describes the behavior of a small-scale braced...It is well known that the generation of excess pore water pressure and/or liquefaction in foundation soils during an earthquake often cause structural failures.This paper describes the behavior of a small-scale braced wall embedded in saturated liquefiable sand under dynamic condition.Shake table tests are performed in the laboratory on embedded retaining walls with single bracing.The tests are conducted for different excavation depths and base motions.The influences of the peak magnitude of the ground motions and the excavation depth on the axial forces in the bracing,the lateral displacement and the bending moments in the braced walls are studied.The shake table tests are simulated numerically using FLAC 2D and the results are compared with the corresponding experimental results.The pore water pressures developed in the soil are found to influence the behavior of the braced wall structures during a dynamic event.It is found that the excess pore water pressure development in the soil below the excavation is higher compared to the soil beside the walls.Thus,the soil below the excavation level is more susceptible to the liquefaction compared to the soil beside the walls.展开更多
A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid ...A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid Droplet Impingement Erosion), etc. Those mechanisms may lead to thinning, leak, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 of USA in 1986 and in Mihama unit 3 of Japan in 1994, the pipe wall thinning management has emerged as one of the most important issues in nuclear power plants. To manage the pipe wall thinning in the secondary system, Korea has used a foreign program since 1996. As using the foreign country’s program for long term, it was necessary to improve from the perspective of the users. Accordingly, KEPCO-E & C has started to develop the 3D-based pipe wall thinning management program (ToSPACE, Total Solution for Piping And Component Engineering management) from eight years ago, and the development was successful. This paper describes the major functions included in ToSPACE program, such as 3D-based DB (Database) buildup, development of FAC and erosion evaluation theories, UT (Ultra-sonic Test) data reliability analysis, field connection with 3D, automatic establishment of long-term inspection plan, etc. ToSPACE program was developed to allow site engineers performing the selection of inspection quantity at each refueling outage, UT data reliability analysis, UT evaluation, determination of next inspection timing, identification of the inspecting and replacing components in 3D drawings, etc., to access easily.展开更多
OBJECTIVE Airway wall remodeling(AWR),which refers to structural changes in the airway,is a key characteristic of asthma.Airway smooth muscle(ASM)cell hypertrophy and hyperplasia contributes to AWR.Glucocorticoids,whi...OBJECTIVE Airway wall remodeling(AWR),which refers to structural changes in the airway,is a key characteristic of asthma.Airway smooth muscle(ASM)cell hypertrophy and hyperplasia contributes to AWR.Glucocorticoids,which are used as first line therapy for the treatment of asthma,reduce ASM proliferation but the magnitude of their anti-proliferative actions is dependent on the mitogen used.Moreover,glucocorticoid therapy is accompanied by many side effects.Artesunate,a semi-synthetic artemisinin derivative,has been widely used to treat malaria with minimal toxicity.Artesunate has been shown to attenuate allergic airway inflammation in mice.However,its role in treating AWR in asthma is not known.In this study,we hypothesize that artesunate has anti-proliferative actions on ASM cells,potentially reversing AWR.METHODS and RESULTS Quiescent primary human ASM cells were pre-treated(1h)with artesunate(3,10,30μmol·L-1)before being stimulated with either FBS(10%)or thrombin(0.3U·mL-1).Following 48 h stimulation with mitogen,cells were counted using a haemocytometer.Dexamethasone(Dex,100nmol·L-1)was used as a positive control.Artesunate concentration-dependently reduced cell number and the magnitude of inhibition appeared to be non-mitogen dependent.Moreover,we examined the effect of artesunate on two important signalling proteins involved in cell proliferation,ERK1/2phosphorylation and cyclin D1 protein levels.Artesunate reduced cyclin D1 protein levels significantly following 20 h stimulation with either thrombin or FBS but had no effect on ERK1/2 phosphorylation following 6h stimulation.Importantly,artesunate(30μmol·L-1),but not Dex,inhibited the phosphorylation of Akt,which is upstream of cyclin D1.Next,we show that the inhibitory effect of artesunate,but not Dex,on ASM cell number is retained at least 24h post-treatment following stimulation with FBS.In an acute murine model of allergic asthma,artesunate treatment decreased sm-α-actin positive cells and cyclin D1 protein abundance in the ovalbumin sensitized and challenged mice.CONCLUSION We have shown that artesunate regulates the PI3K/Akt pathway to inhibit the proliferation of primary human cultured ASM cells.This is an alternative mode of action,in comparison to glucocorticoids such as Dex.The anti-proliferative effect of artesunate was further validated in vivo.Thus,our study provides a basis for the future development of artesunate as a novel anti-AWR agent that targets ASM hyperplasia via the PI3K/Akt pathway.Moreover,artesunate may be used as an add-on therapy for asthmatic patients.展开更多
基金Hunan Provincial key Laboratory of key Technology on Hydropower Development Open Research Fund (PKLHD202203)
文摘Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partially mitigate the magnitudes and consequences of such catastrophic events.We selected a rock avalanche in Nayong County,Guizhou Province,China as a case to study the effect of the location and height of a retaining wall on the dynamic characteristics of rock avalanche by using both actual terrain-based laboratory-model tests and coupled PFC3D-FLAC3D numerical simulations.Our findings demonstrate that a retaining wall can largely block a rock avalanche and its protective efficacy is significantly influenced by the integrity of the retaining wall.Coupled numerical simulation can serve as a powerful tool for analyzing the interaction between a rock avalanche and a retaining wall,facilitating precise observations of its deformation and destruction.The impact-curve characteristics of the retaining wall depend upon whether or not the rock avalanche-induced destruction is taken into account.The location of the retaining wall exerts a greater influence on the outcome compared to the height and materials of the retaining wall,while implementing a stepped retaining-wall pattern in accordance with the terrain demonstrates optimal efficacy in controlling rock avalanche.
基金funded by Scientific Research Deanship at University of Ha ’ il-Saudi Arabia through project number BA-2019。
文摘A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are considered with applying hot temperature at the left surface(collector) of the Trombe wall.The left wall(glazing) of the room and a square part(window) at the right wall are considered at cold temperature.The effects of Rayleigh number and the nanofluid volume fractions and the Trombe wall height on the temperature field,flow structure and heat transfer rate,are studied.The results show that the addition of nanoparticles and the increase of the Trombe wall height,enhance the heat transfer considerably and affect the flow structure and the temperature field.
基金Foundation item: Project(2009-K3-2) supported by the Ministry of Housing and Urban-Rural Development of China
文摘A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.
基金supported by the National Postdoctoral Program(2020M672782)National Natural Science Foundation of China(No.U1663225)+2 种基金Changjiang Scholars and Innovative Research Team in University(No.IRT15R52)National 111 project from the Ministry of Science and Technologythe Ministry of Education of China and the National Key R&D Program of China(No.2016YFA0202602)。
文摘Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving the three-dimensional(3 D)highly conductive hierarchically interconnected nanoporous web by threading microporous metal organic framework MIL-68(Al)crystals onto multi-walled carbon nanotubes(MWCNTs).Such 3 D hierarchically nanoporous web(3 D MIL-68(Al)@MWCNTs web)with a very high surface area,a large amount of micropores,electrical conductivity and elasticity strongly traps the soluble polyselenides during the electrochemical reaction and significantly facilitates lithium ion diffusion and electron transportation.Molecular dynamic calculation confirmed the strong affinity of MIL-68(Al)for the adsorption of polyselenides,quite suitable for Li-Se battery.Their hexahedral channels(1.56 nm)are more efficient for the confinement of polyselenides and for the diffusion of electrolytes compared to their smaller triangular channels(0.63 nm).All these excellent characteristics of 3 D MIL-68(Al)@MWCNTs web with suitable confinement of a large amount of selenium and the conductive linkage between MIL-68(Al)host by MWCNTs result in a high capacity of 453 m Ah/g at 0.2 C with 99.5%coulombic efficiency after 200 cycles with significantly improved cycle stability and rate performance.The 3 D MIL-68(Al)@MWCNTs web presents a good performance in Li-Se battery in term of the specific capacity and cycling stability and also in terms of rate performance compared with all the metal-organic framework(MOF)based or MOF derived porous carbons used in Li-Se battery.
基金Grant No.SR/S3/MERC-0029/2011 of SERB,Department of Science&Technology,New Delhi,India。
文摘It is well known that the generation of excess pore water pressure and/or liquefaction in foundation soils during an earthquake often cause structural failures.This paper describes the behavior of a small-scale braced wall embedded in saturated liquefiable sand under dynamic condition.Shake table tests are performed in the laboratory on embedded retaining walls with single bracing.The tests are conducted for different excavation depths and base motions.The influences of the peak magnitude of the ground motions and the excavation depth on the axial forces in the bracing,the lateral displacement and the bending moments in the braced walls are studied.The shake table tests are simulated numerically using FLAC 2D and the results are compared with the corresponding experimental results.The pore water pressures developed in the soil are found to influence the behavior of the braced wall structures during a dynamic event.It is found that the excess pore water pressure development in the soil below the excavation is higher compared to the soil beside the walls.Thus,the soil below the excavation level is more susceptible to the liquefaction compared to the soil beside the walls.
文摘A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid Droplet Impingement Erosion), etc. Those mechanisms may lead to thinning, leak, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 of USA in 1986 and in Mihama unit 3 of Japan in 1994, the pipe wall thinning management has emerged as one of the most important issues in nuclear power plants. To manage the pipe wall thinning in the secondary system, Korea has used a foreign program since 1996. As using the foreign country’s program for long term, it was necessary to improve from the perspective of the users. Accordingly, KEPCO-E & C has started to develop the 3D-based pipe wall thinning management program (ToSPACE, Total Solution for Piping And Component Engineering management) from eight years ago, and the development was successful. This paper describes the major functions included in ToSPACE program, such as 3D-based DB (Database) buildup, development of FAC and erosion evaluation theories, UT (Ultra-sonic Test) data reliability analysis, field connection with 3D, automatic establishment of long-term inspection plan, etc. ToSPACE program was developed to allow site engineers performing the selection of inspection quantity at each refueling outage, UT data reliability analysis, UT evaluation, determination of next inspection timing, identification of the inspecting and replacing components in 3D drawings, etc., to access easily.
文摘OBJECTIVE Airway wall remodeling(AWR),which refers to structural changes in the airway,is a key characteristic of asthma.Airway smooth muscle(ASM)cell hypertrophy and hyperplasia contributes to AWR.Glucocorticoids,which are used as first line therapy for the treatment of asthma,reduce ASM proliferation but the magnitude of their anti-proliferative actions is dependent on the mitogen used.Moreover,glucocorticoid therapy is accompanied by many side effects.Artesunate,a semi-synthetic artemisinin derivative,has been widely used to treat malaria with minimal toxicity.Artesunate has been shown to attenuate allergic airway inflammation in mice.However,its role in treating AWR in asthma is not known.In this study,we hypothesize that artesunate has anti-proliferative actions on ASM cells,potentially reversing AWR.METHODS and RESULTS Quiescent primary human ASM cells were pre-treated(1h)with artesunate(3,10,30μmol·L-1)before being stimulated with either FBS(10%)or thrombin(0.3U·mL-1).Following 48 h stimulation with mitogen,cells were counted using a haemocytometer.Dexamethasone(Dex,100nmol·L-1)was used as a positive control.Artesunate concentration-dependently reduced cell number and the magnitude of inhibition appeared to be non-mitogen dependent.Moreover,we examined the effect of artesunate on two important signalling proteins involved in cell proliferation,ERK1/2phosphorylation and cyclin D1 protein levels.Artesunate reduced cyclin D1 protein levels significantly following 20 h stimulation with either thrombin or FBS but had no effect on ERK1/2 phosphorylation following 6h stimulation.Importantly,artesunate(30μmol·L-1),but not Dex,inhibited the phosphorylation of Akt,which is upstream of cyclin D1.Next,we show that the inhibitory effect of artesunate,but not Dex,on ASM cell number is retained at least 24h post-treatment following stimulation with FBS.In an acute murine model of allergic asthma,artesunate treatment decreased sm-α-actin positive cells and cyclin D1 protein abundance in the ovalbumin sensitized and challenged mice.CONCLUSION We have shown that artesunate regulates the PI3K/Akt pathway to inhibit the proliferation of primary human cultured ASM cells.This is an alternative mode of action,in comparison to glucocorticoids such as Dex.The anti-proliferative effect of artesunate was further validated in vivo.Thus,our study provides a basis for the future development of artesunate as a novel anti-AWR agent that targets ASM hyperplasia via the PI3K/Akt pathway.Moreover,artesunate may be used as an add-on therapy for asthmatic patients.