背景:3D打印技术可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,在创伤性骨折修复中展示了巨大的应用前景。目的:综述3D打印技术在创伤性骨折中的应用。方法:检索Web of science、PubMed和中国知网数据库2...背景:3D打印技术可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,在创伤性骨折修复中展示了巨大的应用前景。目的:综述3D打印技术在创伤性骨折中的应用。方法:检索Web of science、PubMed和中国知网数据库2020-2024年发表的创伤骨科领域3D打印技术应用的相关文献,英文检索词为“traumatic fracture,3D printing technology,digital model,surgical guide”,中文检索词为“创伤性骨折,3D打印技术,数字模型,手术导板”,经筛选和分析,最终纳入60篇文献进行分析。结果与结论:①创伤性骨折是各种致伤因素导致的骨骼连续性中断和完整性破坏的骨折现象,以可靠方案提高复位愈合效果,已成为骨外科相关研究领域亟需解决的热点问题;②3D打印技术是以数字模型数据为基础的,运用粉末状金属或聚合物等可黏合成型材料以立体光刻、沉积建模和光聚合物喷射等形式制造满足需求三维实体的技术,在数字骨科生物医学领域应用广泛;③3D打印技术在疾病诊断、术前规划、重建骨折三维模型、定制骨科植入体、定制固定支具及假肢、手术导板制作和骨缺损修复等方面发挥了显著的优势,可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,为创伤性骨折的治疗提供了新的思路。展开更多
背景:梯度人工骨修复支架模拟了骨骼系统中的独特特征,在骨骼系统再生中具有巨大的应用潜力。目的:综述梯度人工骨修复支架在骨骼系统组织工程中的最新研究进展,并阐述了其优势与制造策略。方法:由第一作者检索Web of Science和PubMed...背景:梯度人工骨修复支架模拟了骨骼系统中的独特特征,在骨骼系统再生中具有巨大的应用潜力。目的:综述梯度人工骨修复支架在骨骼系统组织工程中的最新研究进展,并阐述了其优势与制造策略。方法:由第一作者检索Web of Science和PubMed数据库2000-2023年发表的文献,英文检索词为“gradient,bone regeneration,scaffold”,最终筛选后对76篇文献进行分析总结。结果与结论:①作为骨骼系统组织高效、高质量修复的重要手段,梯度人工骨修复支架目前针对骨组织、骨-软骨、肌腱-骨组织的天然梯度特征进行了仿生设计,这些支架能够一定程度地从结构、成分上模拟原生组织的细胞外基质,从而促进细胞黏附、迁移、增殖和分化,促进受损组织向原生状态再生恢复。②先进制造技术为梯度人工骨修复支架制备提供了更多可能;目前已经开发了通过空间差异化纤维排布和生物活性物质加载构建的梯度电纺纤维支架;分层叠加、分级孔隙率与生物3D打印技术制造的梯度3D打印支架;原位分层注射、简单逐层叠加、冷冻干燥法制造的梯度水凝胶支架;另外还包括其他方式或多方法联用的支架;这些支架在体外实验中展示了良好的生物相容性,在小型动物实验中能够加速组织再生并且观察到组织学结构明显改善。③目前开发的梯度人工骨修复支架仍需进一步优化,提高在梯度尺度上的匹配性,进一步明确材料与组织相互作用,避免降解产物导致的副反应等问题,未来需要结合相关学科优势与临床需求进一步优化。展开更多
BACKGROUND The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2(PLD2)exerted a regulatory effect on neutrophil migra-tion,thereby alleviating the progression of acu...BACKGROUND The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2(PLD2)exerted a regulatory effect on neutrophil migra-tion,thereby alleviating the progression of acute pancreatitis.AIM To elucidate the clinical mechanism through which PLD2 exerted a regulatory effect on neutrophil migration,thereby alleviating the progression of acute pan-creatitis.METHODS The study involved 90 patients diagnosed with acute pancreatitis,admitted to our hospital between March 2020 and November 2022.A retrospective analysis was conducted,categorizing patients based on Ranson score severity into mild(n=25),moderate(n=30),and severe(n=35)groups.Relevant data was collected for each group.Western blot analysis assessed PLD2 protein expression in patient serum.Real-time reverse transcription polymerase chain reaction was used to evaluate the mRNA expression of chemokine receptors associated with neutrophil migration.Serum levels of inflammatory factors in patients were detected using enzyme-linked immunosorbent assay.Transwell migration tests were conducted to compare migration of neutrophils across groups and analyze the influence of PLD2 on neutrophil migration.RESULTS Overall data analysis did not find significant differences between patient groups(P>0.05).The expression of PLD2 protein in the severe group was lower than that in the moderate and mild groups(P<0.05).The expression level of PLD2 in the moderate group was also lower than that in the mild group(P<0.05).The severity of acute pancreatitis is negatively correlated with PLD2 expression(r=-0.75,P=0.002).The mRNA levels of C-X-C chemokine receptor type 1,C-X-C chemokine receptor type 2,C-C chemokine receptor type 2,and C-C chemokine receptor type 5 in the severe group are significantly higher than those in the moderate and mild groups(P<0.05),and the expression levels in the moderate group are also higher than those in the mild group(P<0.05).The levels of C-reactive protein,tumor necrosis factor-α,interleukin-1β,and interleukin-6 in the severe group were higher than those in the moderate and mild groups(P<0.05),and the levels in the moderate group were also higher than those in the mild group(P<0.05).The number of migrating neutrophils in the severe group was higher than that in the moderate and mild groups(P<0.05),and the moderate group was also higher than the mild group(P<0.05).In addition,the number of migrating neutrophils in the mild group combined with PLD2 inhibitor was higher than that in the mild group(P<0.05),and the number of migrating neutrophils in the moderate group combined with PLD2 inhibitor was higher than that in the moderate group(P<0.05).The number of migrating neutrophils in the severe group+PLD2 inhibitor group was significantly higher than that in the severe group(P<0.05),indicating that PLD2 inhibitors significantly stimulated neutrophil migration.CONCLUSION PLD2 exerted a crucial regulatory role in the pathological progression of acute pancreatitis.Its protein expression varied among patients based on the severity of the disease,and a negative correlation existed between PLD2 expression and disease severity.Additionally,PLD2 appeared to impede acute pancreatitis progression by limiting neutrophil migration.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
文摘背景:梯度人工骨修复支架模拟了骨骼系统中的独特特征,在骨骼系统再生中具有巨大的应用潜力。目的:综述梯度人工骨修复支架在骨骼系统组织工程中的最新研究进展,并阐述了其优势与制造策略。方法:由第一作者检索Web of Science和PubMed数据库2000-2023年发表的文献,英文检索词为“gradient,bone regeneration,scaffold”,最终筛选后对76篇文献进行分析总结。结果与结论:①作为骨骼系统组织高效、高质量修复的重要手段,梯度人工骨修复支架目前针对骨组织、骨-软骨、肌腱-骨组织的天然梯度特征进行了仿生设计,这些支架能够一定程度地从结构、成分上模拟原生组织的细胞外基质,从而促进细胞黏附、迁移、增殖和分化,促进受损组织向原生状态再生恢复。②先进制造技术为梯度人工骨修复支架制备提供了更多可能;目前已经开发了通过空间差异化纤维排布和生物活性物质加载构建的梯度电纺纤维支架;分层叠加、分级孔隙率与生物3D打印技术制造的梯度3D打印支架;原位分层注射、简单逐层叠加、冷冻干燥法制造的梯度水凝胶支架;另外还包括其他方式或多方法联用的支架;这些支架在体外实验中展示了良好的生物相容性,在小型动物实验中能够加速组织再生并且观察到组织学结构明显改善。③目前开发的梯度人工骨修复支架仍需进一步优化,提高在梯度尺度上的匹配性,进一步明确材料与组织相互作用,避免降解产物导致的副反应等问题,未来需要结合相关学科优势与临床需求进一步优化。
文摘BACKGROUND The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2(PLD2)exerted a regulatory effect on neutrophil migra-tion,thereby alleviating the progression of acute pancreatitis.AIM To elucidate the clinical mechanism through which PLD2 exerted a regulatory effect on neutrophil migration,thereby alleviating the progression of acute pan-creatitis.METHODS The study involved 90 patients diagnosed with acute pancreatitis,admitted to our hospital between March 2020 and November 2022.A retrospective analysis was conducted,categorizing patients based on Ranson score severity into mild(n=25),moderate(n=30),and severe(n=35)groups.Relevant data was collected for each group.Western blot analysis assessed PLD2 protein expression in patient serum.Real-time reverse transcription polymerase chain reaction was used to evaluate the mRNA expression of chemokine receptors associated with neutrophil migration.Serum levels of inflammatory factors in patients were detected using enzyme-linked immunosorbent assay.Transwell migration tests were conducted to compare migration of neutrophils across groups and analyze the influence of PLD2 on neutrophil migration.RESULTS Overall data analysis did not find significant differences between patient groups(P>0.05).The expression of PLD2 protein in the severe group was lower than that in the moderate and mild groups(P<0.05).The expression level of PLD2 in the moderate group was also lower than that in the mild group(P<0.05).The severity of acute pancreatitis is negatively correlated with PLD2 expression(r=-0.75,P=0.002).The mRNA levels of C-X-C chemokine receptor type 1,C-X-C chemokine receptor type 2,C-C chemokine receptor type 2,and C-C chemokine receptor type 5 in the severe group are significantly higher than those in the moderate and mild groups(P<0.05),and the expression levels in the moderate group are also higher than those in the mild group(P<0.05).The levels of C-reactive protein,tumor necrosis factor-α,interleukin-1β,and interleukin-6 in the severe group were higher than those in the moderate and mild groups(P<0.05),and the levels in the moderate group were also higher than those in the mild group(P<0.05).The number of migrating neutrophils in the severe group was higher than that in the moderate and mild groups(P<0.05),and the moderate group was also higher than the mild group(P<0.05).In addition,the number of migrating neutrophils in the mild group combined with PLD2 inhibitor was higher than that in the mild group(P<0.05),and the number of migrating neutrophils in the moderate group combined with PLD2 inhibitor was higher than that in the moderate group(P<0.05).The number of migrating neutrophils in the severe group+PLD2 inhibitor group was significantly higher than that in the severe group(P<0.05),indicating that PLD2 inhibitors significantly stimulated neutrophil migration.CONCLUSION PLD2 exerted a crucial regulatory role in the pathological progression of acute pancreatitis.Its protein expression varied among patients based on the severity of the disease,and a negative correlation existed between PLD2 expression and disease severity.Additionally,PLD2 appeared to impede acute pancreatitis progression by limiting neutrophil migration.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.