期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于D2-YOLO去模糊识别网络的果园障碍物检测
被引量:
5
1
作者
蔡舒平
潘文浩
+2 位作者
刘慧
曾潇
孙仲鸣
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第2期284-292,共9页
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网...
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。
展开更多
关键词
果园机器人
障碍物检测
模糊图像
d2
-
yolo
融合网络
下载PDF
职称材料
题名
基于D2-YOLO去模糊识别网络的果园障碍物检测
被引量:
5
1
作者
蔡舒平
潘文浩
刘慧
曾潇
孙仲鸣
机构
江苏大学电气信息工程学院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第2期284-292,共9页
基金
国家自然科学基金项目(32171908)
江苏省现代农机装备与技术示范推广项目(NJ2021-14)
江苏高校优势学科项目(PAPD)。
文摘
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。
关键词
果园机器人
障碍物检测
模糊图像
d2
-
yolo
融合网络
Keywords
agricultural robot in orchard
obstacle detection
blurred images
d2 yolo
fusion network
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
S24 [农业科学—农业电气化与自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于D2-YOLO去模糊识别网络的果园障碍物检测
蔡舒平
潘文浩
刘慧
曾潇
孙仲鸣
《农业机械学报》
EI
CAS
CSCD
北大核心
2023
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部