The vacuum ultraviolet (VUV) spectroscopic properties of praseodymium (Pr3+, 1at%) doped LaF3 nanocrystals/glass at room temperature and 20 K are reported. Two types of Pr3+ ions, those in LaF3 nanocrystals and those ...The vacuum ultraviolet (VUV) spectroscopic properties of praseodymium (Pr3+, 1at%) doped LaF3 nanocrystals/glass at room temperature and 20 K are reported. Two types of Pr3+ ions, those in LaF3 nanocrystals and those in the glass host, were excited to 4f 5d band by VUV using synchrotron radiation as an excitation source, and emissions of 1S0 → 1D2 (336 nm), 1S0 → 1I6 (397 nm ) of Pr3+ in the nanocrystals and emissions of 4f 5d → 3HJ, 3FJ of Pr3+ in the glass appeared at the same time. But unlike in the bulk sample crystals, emission of 3P0 → 3HJ, 3FJ as the second step of the quantum splitting (QS) of Pr3+ in the LaF3 nanocrystals was not observed at room temperature, which could be explained that Pr3+ ions in the glass absorbed the energy of 3P0 → 3H4 of Pr3+ in the nanocrystals. Two types of excitation spectra monitoring different emissions were also measured, so it could be observed that the lowest energy of 4f 5d band of Pr3+ in the nanocrystals was about 53 500 cm-1 (186 nm) and in the glass about 33 800 cm-1(295 nm), respectively. These emission and excitation spectra were contrasted to those of bulk sample crystals LaF3∶Pr3+.展开更多
Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In...Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.展开更多
The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consi...The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa (discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce^3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4d of Y mixed with 5d of Ce, even for the wavefunctions (WFS) with energy Ed under BCB there are still 24% of Y-4d and 9% of F-2p as components. So, they are not pure crystal-field states at all. Furthermore, transition state (TS) calculation was performed to obtain the 4f→5d transition energies Efd, to improve the previous calculation performed by Andriessen et al, in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare with the observed 4f→5 d transition energies. The ionic radius of Ce^3+ is larger than that of y^3+ , so we had also modeled approximately the lattice relaxation. As results, the CeY4Li8F24 cluster with 4.56 % outward relaxation (of the nearest-neighbor and next nearest-neighbor eight fluorines) has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the ground-state calculated Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5 d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is some how around 4. 56% -7.36% outward, not as large as 10% proposed by Andriessen et al.展开更多
There are two types of Pr3+ ion in the Pr3+ doped oxyfluoride glass containing LaF3 nanocrystal: the lowest 4f5d state of Pr3+ in LaF3 nanocrystal is located energetically higher than the 1S0 state, while in glass the...There are two types of Pr3+ ion in the Pr3+ doped oxyfluoride glass containing LaF3 nanocrystal: the lowest 4f5d state of Pr3+ in LaF3 nanocrystal is located energetically higher than the 1S0 state, while in glass the lowest 4f5d state is lower than the 1S0 state. We deduce the positions of the lowest 4f5d band of these two types of Pr3+ ion by vacuum ultraviolet (VUV) and ultraviolet (UV) excitation spectra. When the sample is excited by 181 nm, the narrow band emission of 4f2→4f2 of Pr3+ ion in the nanocrystal and the broad band emission of 4f5d→4f2 in the glass appear at the same time. However, the second step of the photon cascade emission(PCE) of Pr3+ in the LaF3 nanocrystal, corresponding to the emission of 3P0→3H4, can be observed at 20 K, but not at room temperature. The reason accounting for this phenomenon was discussed in detail.展开更多
The vacuum ultraviolet (VUV) luminescent properties of Pr^3+ -activated LaB3O6 were investigated with highenergetic synchrotron radiation from 20 to 300 K. In the emission spectra, the parity-forbidden 4f^2→4f^2 a...The vacuum ultraviolet (VUV) luminescent properties of Pr^3+ -activated LaB3O6 were investigated with highenergetic synchrotron radiation from 20 to 300 K. In the emission spectra, the parity-forbidden 4f^2→4f^2 and parity-allowed 4f5d→4f^2 transitions were observed simultaneously. In addition, it was also observed that the intensity of 4f5d→4f^2 emission bands increased relative to the intensity of 4f^2→4f^2 emissions with increasing temperature. The thermal equilibrium model of energy levels was employed with respect to the lowest 4f5d state and ^1S0 state of LaB3O6:Pr^3+ , as a result of which the fitted curve had a good agreement with the experiment values, which clarified the physical nature of temperature-dependent emission characteristics of Pr^3+ in LaB3O6.展开更多
The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consi...The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa (discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce^3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4d of Y mixed with 5d of Ce, even for the wavefunctions (WFS) with energy Ed under BCB there are still 24% of Y-4d and 9% of F-2p as components. So, they are not pure crystal-field states at all. Furthermore, transition state (TS) calculation was performed to obtain the 4f→5d transition energies Efd, to improve the previous calculation performed by Andriessen et al, in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare with the observed 4f→5 d transition energies. The ionic radius of Ce^3+ is larger than that of y^3+ , so we had also modeled approximately the lattice relaxation. As results, the CeY4Li8F24 cluster with 4.56 % outward relaxation (of the nearest-neighbor and next nearest-neighbor eight fluorines) has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the ground-state calculated Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5 d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is some how around 4. 56% -7.36% outward, not as large as 10% proposed by Andriessen et al.展开更多
文摘The vacuum ultraviolet (VUV) spectroscopic properties of praseodymium (Pr3+, 1at%) doped LaF3 nanocrystals/glass at room temperature and 20 K are reported. Two types of Pr3+ ions, those in LaF3 nanocrystals and those in the glass host, were excited to 4f 5d band by VUV using synchrotron radiation as an excitation source, and emissions of 1S0 → 1D2 (336 nm), 1S0 → 1I6 (397 nm ) of Pr3+ in the nanocrystals and emissions of 4f 5d → 3HJ, 3FJ of Pr3+ in the glass appeared at the same time. But unlike in the bulk sample crystals, emission of 3P0 → 3HJ, 3FJ as the second step of the quantum splitting (QS) of Pr3+ in the LaF3 nanocrystals was not observed at room temperature, which could be explained that Pr3+ ions in the glass absorbed the energy of 3P0 → 3H4 of Pr3+ in the nanocrystals. Two types of excitation spectra monitoring different emissions were also measured, so it could be observed that the lowest energy of 4f 5d band of Pr3+ in the nanocrystals was about 53 500 cm-1 (186 nm) and in the glass about 33 800 cm-1(295 nm), respectively. These emission and excitation spectra were contrasted to those of bulk sample crystals LaF3∶Pr3+.
基金This work was supported by the National Key Basic Research Program of China (No.2013CB921800), the National Natural Science Foundation of China (No.11374291, No.11311120047, No.11274299, No.11447197, and No.11204292), the Fundamen- tal Research Funds for the Central Universities (No.WK20304200), the Anhui Provincial Natural Science Foundation (No.1508085QA09). The numerical calculations have been partially done on the super- computing system in the Supercomputing Center of University of Science and Technology of China.
文摘Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.
文摘The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa (discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce^3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4d of Y mixed with 5d of Ce, even for the wavefunctions (WFS) with energy Ed under BCB there are still 24% of Y-4d and 9% of F-2p as components. So, they are not pure crystal-field states at all. Furthermore, transition state (TS) calculation was performed to obtain the 4f→5d transition energies Efd, to improve the previous calculation performed by Andriessen et al, in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare with the observed 4f→5 d transition energies. The ionic radius of Ce^3+ is larger than that of y^3+ , so we had also modeled approximately the lattice relaxation. As results, the CeY4Li8F24 cluster with 4.56 % outward relaxation (of the nearest-neighbor and next nearest-neighbor eight fluorines) has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the ground-state calculated Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5 d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is some how around 4. 56% -7.36% outward, not as large as 10% proposed by Andriessen et al.
文摘There are two types of Pr3+ ion in the Pr3+ doped oxyfluoride glass containing LaF3 nanocrystal: the lowest 4f5d state of Pr3+ in LaF3 nanocrystal is located energetically higher than the 1S0 state, while in glass the lowest 4f5d state is lower than the 1S0 state. We deduce the positions of the lowest 4f5d band of these two types of Pr3+ ion by vacuum ultraviolet (VUV) and ultraviolet (UV) excitation spectra. When the sample is excited by 181 nm, the narrow band emission of 4f2→4f2 of Pr3+ ion in the nanocrystal and the broad band emission of 4f5d→4f2 in the glass appear at the same time. However, the second step of the photon cascade emission(PCE) of Pr3+ in the LaF3 nanocrystal, corresponding to the emission of 3P0→3H4, can be observed at 20 K, but not at room temperature. The reason accounting for this phenomenon was discussed in detail.
基金Project supported by the National Natural Science Foundation of China (10204001 ,10374002 and 10434030) the"973"Program(2003CB314707)Beijing Jiaotong University Program(2006XM038)
文摘The vacuum ultraviolet (VUV) luminescent properties of Pr^3+ -activated LaB3O6 were investigated with highenergetic synchrotron radiation from 20 to 300 K. In the emission spectra, the parity-forbidden 4f^2→4f^2 and parity-allowed 4f5d→4f^2 transitions were observed simultaneously. In addition, it was also observed that the intensity of 4f5d→4f^2 emission bands increased relative to the intensity of 4f^2→4f^2 emissions with increasing temperature. The thermal equilibrium model of energy levels was employed with respect to the lowest 4f5d state and ^1S0 state of LaB3O6:Pr^3+ , as a result of which the fitted curve had a good agreement with the experiment values, which clarified the physical nature of temperature-dependent emission characteristics of Pr^3+ in LaB3O6.
文摘The electronic structures of LiYF4:Ce^3+ and LiYF4 crystal simulated by an embedded (in a microcrystal containing 1938 ions) cluster CeY4Li8F24, and Y5LisF24 respectively, were computed by the ab initio self-consistent relativistic DV-Xa (discrete variational Xa) method. The ground-state calculation showed that only the lowest 5d level Ed of Ce^3+ ion lies around the BCB (bottom of the conduction band) while the lowest 4f levels is 2.5 eV lower than BCB. The CB states consist of 4d of Y mixed with 5d of Ce, even for the wavefunctions (WFS) with energy Ed under BCB there are still 24% of Y-4d and 9% of F-2p as components. So, they are not pure crystal-field states at all. Furthermore, transition state (TS) calculation was performed to obtain the 4f→5d transition energies Efd, to improve the previous calculation performed by Andriessen et al, in which a small CeF8 cluster embedded in an array of point charge was used and the results of ground-state calculation were roughly used to compare with the observed 4f→5 d transition energies. The ionic radius of Ce^3+ is larger than that of y^3+ , so we had also modeled approximately the lattice relaxation. As results, the CeY4Li8F24 cluster with 4.56 % outward relaxation (of the nearest-neighbor and next nearest-neighbor eight fluorines) has the lowest total energy and gave satisfactory 4f→5d energies Efd, but the ground-state calculated Ed is 0.68 eV higher than BCB. For another cluster with 7.36% outward relaxation the Ed is 0.43 eV lower than BCB, which makes the observation of fine structure (including zero-phonon line) of the lowest 5 d band understandable easier, but the splits between the transition energies Efd were not as good as the former. Therefore, we consider the relaxation is some how around 4. 56% -7.36% outward, not as large as 10% proposed by Andriessen et al.