期刊文献+
共找到332,171篇文章
< 1 2 250 >
每页显示 20 50 100
Data Component:An Innovative Framework for Information Value Metrics in the Digital Economy
1
作者 Tao Xiaoming Wang Yu +5 位作者 Peng Jieyang Zhao Yuelin Wang Yue Wang Youzheng Hu Chengsheng Lu Zhipeng 《China Communications》 SCIE CSCD 2024年第5期17-35,共19页
The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive st... The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive structure for measuring the worth of data elements,hindering effective navigation of the changing digital environment.This paper aims to fill this research gap by introducing the innovative concept of“data components.”It proposes a graphtheoretic representation model that presents a clear mathematical definition and demonstrates the superiority of data components over traditional processing methods.Additionally,the paper introduces an information measurement model that provides a way to calculate the information entropy of data components and establish their increased informational value.The paper also assesses the value of information,suggesting a pricing mechanism based on its significance.In conclusion,this paper establishes a robust framework for understanding and quantifying the value of implicit information in data,laying the groundwork for future research and practical applications. 展开更多
关键词 data component data element data governance data science information theory
下载PDF
Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism
2
作者 Jing-Doo Wang Chayadi Oktomy Noto Susanto 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1711-1728,共18页
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow acc... A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature. 展开更多
关键词 Traffic flow prediction sptiotemporal data heterogeneous data Conv-BiLSTM data-CENTRIC intra-data
下载PDF
Research on Data Theory of Value
3
作者 Li Haijian Zhao Li 《China Economist》 2024年第3期21-38,共18页
This paper explores the data theory of value along the line of reasoning epochal characteristics of data-theoretical innovation-paradigmatic transformation and,through a comparison of hard and soft factors and observa... This paper explores the data theory of value along the line of reasoning epochal characteristics of data-theoretical innovation-paradigmatic transformation and,through a comparison of hard and soft factors and observation of data peculiar features,it draws the conclusion that data have the epochal characteristics of non-competitiveness and non-exclusivity,decreasing marginal cost and increasing marginal return,non-physical and intangible form,and non-finiteness and non-scarcity.It is the epochal characteristics of data that undermine the traditional theory of value and innovate the“production-exchange”theory,including data value generation,data value realization,data value rights determination and data value pricing.From the perspective of data value generation,the levels of data quality,processing,use and connectivity,data application scenarios and data openness will influence data value.From the perspective of data value realization,data,as independent factors of production,show value creation effect,create a value multiplier effect by empowering other factors of production,and substitute other factors of production to create a zero-price effect.From the perspective of data value rights determination,based on the theory of property,the tragedy of the private outweighs the comedy of the private with respect to data,and based on the theory of sharing economy,the comedy of the commons outweighs the tragedy of the commons with respect to data.From the perspective of data pricing,standardized data products can be priced according to the physical product attributes,and non-standardized data products can be priced according to the virtual product attributes.Based on the epochal characteristics of data and theoretical innovation,the“production-exchange”paradigm has undergone a transformation from“using tangible factors to produce tangible products and exchanging tangible products for tangible products”to“using intangible factors to produce tangible products and exchanging intangible products for tangible products”and ultimately to“using intangible factors to produce intangible products and exchanging intangible products for intangible products”. 展开更多
关键词 data theory of value data value generation data value rights determination data value pricing
下载PDF
A Review of the Status and Development Strategies of Computer Science and Technology Under the Background of Big Data
4
作者 Junlin Zhang 《Journal of Electronic Research and Application》 2024年第2期49-53,共5页
This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technol... This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technology,focusing on analyzing the current application status of computer science and technology in big data,including data storage,data processing,and data analysis.Then,it proposes development strategies for big data processing.Computer science and technology play a vital role in big data processing by providing strong technical support. 展开更多
关键词 Big data Computer science and technology data storage data processing data visualization
下载PDF
Data complexity-based batch sanitization method against poison in distributed learning
5
作者 Silv Wang Kai Fan +2 位作者 Kuan Zhang Hui Li Yintang Yang 《Digital Communications and Networks》 SCIE CSCD 2024年第2期416-428,共13页
The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are ca... The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are called causative availability indiscriminate attacks.Facing the problem that existing data sanitization methods are hard to apply to real-time applications due to their tedious process and heavy computations,we propose a new supervised batch detection method for poison,which can fleetly sanitize the training dataset before the local model training.We design a training dataset generation method that helps to enhance accuracy and uses data complexity features to train a detection model,which will be used in an efficient batch hierarchical detection process.Our model stockpiles knowledge about poison,which can be expanded by retraining to adapt to new attacks.Being neither attack-specific nor scenario-specific,our method is applicable to FL/DML or other online or offline scenarios. 展开更多
关键词 Distributed machine learning security Federated learning data poisoning attacks data sanitization Batch detection data complexity
下载PDF
Machine Learning Security Defense Algorithms Based on Metadata Correlation Features
6
作者 Ruchun Jia Jianwei Zhang Yi Lin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2391-2418,共28页
With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The networ... With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data. 展开更多
关键词 data-oriented architecture METAdata correlation features machine learning security defense data source integration
下载PDF
Analysis of Secured Cloud Data Storage Model for Information
7
作者 Emmanuel Nwabueze Ekwonwune Udo Chukwuebuka Chigozie +1 位作者 Duroha Austin Ekekwe Georgina Chekwube Nwankwo 《Journal of Software Engineering and Applications》 2024年第5期297-320,共24页
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac... This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system. 展开更多
关键词 CLOUD data Information Model data Storage Cloud Computing Security System data Encryption
下载PDF
Designing and Implementing an Advanced Big Data Governance Platform
8
作者 Yekun Chen Tianqi Xu Yongjiang Xue 《Journal of Electronic Research and Application》 2024年第3期13-19,共7页
Contemporary mainstream big data governance platforms are built atop the big data ecosystem components,offering a one-stop development and analysis governance platform for the collection,transmission,storage,cleansing... Contemporary mainstream big data governance platforms are built atop the big data ecosystem components,offering a one-stop development and analysis governance platform for the collection,transmission,storage,cleansing,transformation,querying and analysis,data development,publishing,and subscription,sharing and exchange,management,and services of massive data.These platforms serve various role members who have internal and external data needs.However,in the era of big data,the rapid update and iteration of big data technologies,the diversification of data businesses,and the exponential growth of data present more challenges and uncertainties to the construction of big data governance platforms.This paper discusses how to effectively build a data governance platform under the big data system from the perspectives of functional architecture,logical architecture,data architecture,and functional design. 展开更多
关键词 Big data data governance Cleansing and transformation data development Sharing and exchange
下载PDF
Using Python to Analyze Financial Big Data
9
作者 Xuanrui Zhu 《Journal of Electronic Research and Application》 2024年第5期12-20,共9页
As technology and the internet develop,more data are generated every day.These data are in large sizes,high dimensions,and complex structures.The combination of these three features is the“Big Data”[1].Big data is r... As technology and the internet develop,more data are generated every day.These data are in large sizes,high dimensions,and complex structures.The combination of these three features is the“Big Data”[1].Big data is revolutionizing all industries,bringing colossal impacts to them[2].Many researchers have pointed out the huge impact that big data can have on our daily lives[3].We can utilize the information we obtain and help us make decisions.Also,the conclusions we drew from the big data we analyzed can be used as a prediction for the future,helping us to make more accurate and benign decisions earlier than others.If we apply these technics in finance,for example,in stock,we can get detailed information for stocks.Moreover,we can use the analyzed data to predict certain stocks.This can help people decide whether to buy a stock or not by providing predicted data for people at a certain convincing level,helping to protect them from potential losses. 展开更多
关键词 Big data finance Big data in financial services Big data in risk management AI Machine learning
下载PDF
Hadoop-based secure storage solution for big data in cloud computing environment 被引量:1
10
作者 Shaopeng Guan Conghui Zhang +1 位作者 Yilin Wang Wenqing Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期227-236,共10页
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose... In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average. 展开更多
关键词 Big data security data encryption HADOOP Parallel encrypted storage Zookeeper
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
11
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
Redundant Data Detection and Deletion to Meet Privacy Protection Requirements in Blockchain-Based Edge Computing Environment
12
作者 Zhang Lejun Peng Minghui +6 位作者 Su Shen Wang Weizheng Jin Zilong Su Yansen Chen Huiling Guo Ran Sergey Gataullin 《China Communications》 SCIE CSCD 2024年第3期149-159,共11页
With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou... With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis. 展开更多
关键词 blockchain data integrity edge computing privacy protection redundant data
下载PDF
Leveraging the potential of big genomic and phenotypic data for genome-wide association mapping in wheat
13
作者 Moritz Lell Yusheng Zhao Jochen C.Reif 《The Crop Journal》 SCIE CSCD 2024年第3期803-813,共11页
Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-s... Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community. 展开更多
关键词 Big data Genome-wide association study data integration Genomic prediction WHEAT
下载PDF
Preserving Data Secrecy and Integrity for Cloud Storage Using Smart Contracts and Cryptographic Primitives
14
作者 Maher Alharby 《Computers, Materials & Continua》 SCIE EI 2024年第5期2449-2463,共15页
Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This a... Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology,smart contracts,and cryptographic primitives.The proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data.To preserve data secrecy,symmetric encryption systems are employed to encrypt user data before outsourcing it.An extensive performance analysis is conducted to illustrate the efficiency of the proposed mechanism.Additionally,a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to measure its associated running costs.The security analysis of the proposed system confirms that our approach can securely maintain the confidentiality and integrity of cloud storage,even in the presence of malicious entities.The proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as a foundation for developing more secure cloud storage systems. 展开更多
关键词 Cloud storage data secrecy data integrity smart contracts CRYPTOGRAPHY
下载PDF
Trusted Certified Auditor Using Cryptography for Secure Data Outsourcing and Privacy Preservation in Fog-Enabled VANETs
15
作者 Nagaraju Pacharla K.Srinivasa Reddy 《Computers, Materials & Continua》 SCIE EI 2024年第5期3089-3110,共22页
With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.Th... With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations. 展开更多
关键词 Vehicular ad-hoc networks data outsourcing privacy preservation CRYPTOGRAPHY keys trusted certified auditors data security
下载PDF
Blockchain-Enabled Federated Learning for Privacy-Preserving Non-IID Data Sharing in Industrial Internet
16
作者 Qiuyan Wang Haibing Dong +2 位作者 Yongfei Huang Zenglei Liu Yundong Gou 《Computers, Materials & Continua》 SCIE EI 2024年第8期1967-1983,共17页
Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by d... Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet. 展开更多
关键词 Federated learning data sharing non-IID data differential privacy blockchain
下载PDF
Big Data Access Control Mechanism Based on Two-Layer Permission Decision Structure
17
作者 Aodi Liu Na Wang +3 位作者 Xuehui Du Dibin Shan Xiangyu Wu Wenjuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期1705-1726,共22页
Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy... Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources. 展开更多
关键词 Big data access control data security BiLSTM
下载PDF
A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion
18
作者 Xiu Liu Liang Gu +3 位作者 Xin Gong Long An Xurui Gao Juying Wu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4045-4061,共17页
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi... With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed. 展开更多
关键词 data alignment dimension reduction feature fusion data anomaly detection deep learning
下载PDF
A novel method for clustering cellular data to improve classification
19
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
下载PDF
Sec-Auditor:A Blockchain-Based Data Auditing Solution for Ensuring Integrity and Semantic Correctness
20
作者 Guodong Han Hecheng Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2121-2137,共17页
Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when ... Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when users perform file operations,the semantic integrity of the data can be compromised.Ensuring both data integrity and semantic correctness has become a critical issue that requires attention.We introduce a pioneering solution called Sec-Auditor,the first of its kind with the ability to verify data integrity and semantic correctness simultaneously,while maintaining a constant communication cost independent of the audited data volume.Sec-Auditor also supports public auditing,enabling anyone with access to public information to conduct data audits.This feature makes Sec-Auditor highly adaptable to open data environments,such as the cloud.In Sec-Auditor,users are assigned specific rules that are utilized to verify the accuracy of data semantic.Furthermore,users are given the flexibility to update their own rules as needed.We conduct in-depth analyses of the correctness and security of Sec-Auditor.We also compare several important security attributes with existing schemes,demonstrating the superior properties of Sec-Auditor.Evaluation results demonstrate that even for time-consuming file upload operations,our solution is more efficient than the comparison one. 展开更多
关键词 Provable data possession public auditing cloud storage data integrity semantic correctness
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部