为对比分析HEC-HMS模型三种降雨损失方法在沁河流域的适用性。借助Morris筛选法识别降雨损失方法的关键参数,选用流域内5场雨洪资料进行参数率定和模拟精度分析。结果表明:(1)SCS CN值曲线法、Green-Ampt法、Initial and Uniform法主要...为对比分析HEC-HMS模型三种降雨损失方法在沁河流域的适用性。借助Morris筛选法识别降雨损失方法的关键参数,选用流域内5场雨洪资料进行参数率定和模拟精度分析。结果表明:(1)SCS CN值曲线法、Green-Ampt法、Initial and Uniform法主要敏感性参数分别为CN值、土壤饱和导水率、恒定损失率。(2)选取洪峰流量、洪水总量、峰现时刻误差以及Nash系数对模型模拟精度进行评价,SCS CN值曲线法和Initial and Uniform法模拟结果达到乙等精度,Green-Ampt法模拟结果达到丙等精度。研究成果可为半湿润地区中小流域降雨损失方法的选择提供参考。展开更多
Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The sample...Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The samples were characterized by XRD, N2- adsorption, PTIR, 29Si NMR, DR UV-vis, and evaluated by epoxidation of styrene, propylene, cyclohexene, and 1-hexene with cumene hydroperoxide (CLIP) as oxidant, respectively. It is revealed that the catalyst possesses typical mesoporous structure, high hydrophobicity and highly dispersed tetracoordinated titanium sites and hence exhibits excellent performance in epoxidation of olefins.展开更多
The main aim in this research is comparison the parameters of some storm events in the watershed using two loss models in Unit hydrograph method by HEC-HMS. SCS Curve Number and Green-Ampt methods by developing loss m...The main aim in this research is comparison the parameters of some storm events in the watershed using two loss models in Unit hydrograph method by HEC-HMS. SCS Curve Number and Green-Ampt methods by developing loss model as a major component in runoff and flood modeling. The study is conducted in the Kuala Lumpurwatershed with674 km2 area located in Klang basin inMalaysia. The catchment delineation is generated for the Klang watershed to get sub-watershed parameters by using HEC-GeoHMS extension in ARCGIS. Then all the necessary parameters are assigned to the models applied in this study to run the runoff and flood model. The results showed that there was no significant difference between the SCS-CN and Green-Ampt loss method applied in the Klang watershed. Estimated direct runoff and Peak discharge (r = 0.98) indicates a statistically positive correlations between the results of the study. And also it has been attempted to use objective functions in HEC-HMS (percent error peaks and percent error volume) to classify the methods. The selection of best method is on the base of considering least difference between the results of simulation to observed events in hydrographs so that it can address which model is suit for runoff-flood simulation in Klang watershed. Results showed that SCS CN and Green-Ampt methods, in three events by fitting with percent error in peak and percent error in volume had no significant difference.展开更多
文摘为对比分析HEC-HMS模型三种降雨损失方法在沁河流域的适用性。借助Morris筛选法识别降雨损失方法的关键参数,选用流域内5场雨洪资料进行参数率定和模拟精度分析。结果表明:(1)SCS CN值曲线法、Green-Ampt法、Initial and Uniform法主要敏感性参数分别为CN值、土壤饱和导水率、恒定损失率。(2)选取洪峰流量、洪水总量、峰现时刻误差以及Nash系数对模型模拟精度进行评价,SCS CN值曲线法和Initial and Uniform法模拟结果达到乙等精度,Green-Ampt法模拟结果达到丙等精度。研究成果可为半湿润地区中小流域降雨损失方法的选择提供参考。
文摘Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The samples were characterized by XRD, N2- adsorption, PTIR, 29Si NMR, DR UV-vis, and evaluated by epoxidation of styrene, propylene, cyclohexene, and 1-hexene with cumene hydroperoxide (CLIP) as oxidant, respectively. It is revealed that the catalyst possesses typical mesoporous structure, high hydrophobicity and highly dispersed tetracoordinated titanium sites and hence exhibits excellent performance in epoxidation of olefins.
文摘The main aim in this research is comparison the parameters of some storm events in the watershed using two loss models in Unit hydrograph method by HEC-HMS. SCS Curve Number and Green-Ampt methods by developing loss model as a major component in runoff and flood modeling. The study is conducted in the Kuala Lumpurwatershed with674 km2 area located in Klang basin inMalaysia. The catchment delineation is generated for the Klang watershed to get sub-watershed parameters by using HEC-GeoHMS extension in ARCGIS. Then all the necessary parameters are assigned to the models applied in this study to run the runoff and flood model. The results showed that there was no significant difference between the SCS-CN and Green-Ampt loss method applied in the Klang watershed. Estimated direct runoff and Peak discharge (r = 0.98) indicates a statistically positive correlations between the results of the study. And also it has been attempted to use objective functions in HEC-HMS (percent error peaks and percent error volume) to classify the methods. The selection of best method is on the base of considering least difference between the results of simulation to observed events in hydrographs so that it can address which model is suit for runoff-flood simulation in Klang watershed. Results showed that SCS CN and Green-Ampt methods, in three events by fitting with percent error in peak and percent error in volume had no significant difference.