In this study, SiOx films were deposited by a dielectric barrier discharge (DBD) plasma gun at an atmospheric pressure. The relationship of the film structures with plasma powers was investigated by Fourier transfor...In this study, SiOx films were deposited by a dielectric barrier discharge (DBD) plasma gun at an atmospheric pressure. The relationship of the film structures with plasma powers was investigated by Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). It was shown that an uniform and cross-linking structure film was formed by the DBD gun. As an application, the SiOx films were deposited on a carbon steel surface for the anti-corrosion purpose. The experiment was carried out in a 0.1 M NaCl solution. It was found that a very good anti-corrosive property was obtained, i.e., the corrosion rate was decreased c.a. 15 times in 5% NaCl solution compared to the non-SiOx coated steel, as detected by the potentiodynamic polarization measurement.展开更多
基金supported by the National Natural Science Foundation of China(No.10475010)
文摘In this study, SiOx films were deposited by a dielectric barrier discharge (DBD) plasma gun at an atmospheric pressure. The relationship of the film structures with plasma powers was investigated by Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). It was shown that an uniform and cross-linking structure film was formed by the DBD gun. As an application, the SiOx films were deposited on a carbon steel surface for the anti-corrosion purpose. The experiment was carried out in a 0.1 M NaCl solution. It was found that a very good anti-corrosive property was obtained, i.e., the corrosion rate was decreased c.a. 15 times in 5% NaCl solution compared to the non-SiOx coated steel, as detected by the potentiodynamic polarization measurement.