A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 1...A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 10-9. The effect of the group delay ripple of the fiber grating is also investigated in the recirculating systems, and it is shown that the transmission distance is limited to 4 cycles (4× 167.1km ) in the loop with the power penalty fluctuation below 1.0dB. Thus the group delay ripple should be reduced to allow for the wavelength drift of ±5GHz.At the end of this letter, the principles are given for designing long haul recirculating systems with dispersion compensation CFBG.展开更多
A low cost 8×10-Gb/s transmission system over 1500 km on conventional fiber using chirped fiber Bragg grating (CFBG) as dispersion compensator is demonstrated. The bit error rate (BER) below 10^-10 at 1500 km...A low cost 8×10-Gb/s transmission system over 1500 km on conventional fiber using chirped fiber Bragg grating (CFBG) as dispersion compensator is demonstrated. The bit error rate (BER) below 10^-10 at 1500 km is obtained. The channel spacing is 0.8 nm and the optical amplifier spacing is 100 km. Only 16 erbium-doped fiber amplifiers (EDFAs) are used.展开更多
In this paper, the dispersion compensation for 4×10 Gb/s. 400 km G.652 fiber by chirped optical fiber Bragg grating (FBG) is introduced. For the first time, we have measured and compensated the polarization mode ...In this paper, the dispersion compensation for 4×10 Gb/s. 400 km G.652 fiber by chirped optical fiber Bragg grating (FBG) is introduced. For the first time, we have measured and compensated the polarization mode dispersion (PMD) of FBG. which in each channel is less than 1.1 ps. When the bit error rate (BER) is 10-and the bit error is zero, the transmission power penalty of each channel is less than 2 dB, and the best result is negative which means that the receiver sensitivity is increased after transmission.展开更多
With the development of optical communication systems in high bandwidth fiber, various degradations affect the propagation of light signals such as polarization mode dispersion which represents a temporal pulse broade...With the development of optical communication systems in high bandwidth fiber, various degradations affect the propagation of light signals such as polarization mode dispersion which represents a temporal pulse broadening, it becomes troublesome from long and long distances for this, it is necessary to regenerate the signal optically, that is to say, the amplified (1R regeneration) , the reshaping (2R regeneration) and sometimes resynchronize to overcome the phenomenon of jitter time (3R regeneration). In this paper we study the contribution of 2R optical regenerator self-modulation to combat the phenomenon of polarization mode dispersion. The experiment is simulated with optisystem.展开更多
基金the National 863 High Technology Development Program of China (No.2001 AA122012)
文摘A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 10-9. The effect of the group delay ripple of the fiber grating is also investigated in the recirculating systems, and it is shown that the transmission distance is limited to 4 cycles (4× 167.1km ) in the loop with the power penalty fluctuation below 1.0dB. Thus the group delay ripple should be reduced to allow for the wavelength drift of ±5GHz.At the end of this letter, the principles are given for designing long haul recirculating systems with dispersion compensation CFBG.
基金This work was supported by the "863" High-Technology Research and Development Program ofChina under Grant No. 2001AA120201
文摘A low cost 8×10-Gb/s transmission system over 1500 km on conventional fiber using chirped fiber Bragg grating (CFBG) as dispersion compensator is demonstrated. The bit error rate (BER) below 10^-10 at 1500 km is obtained. The channel spacing is 0.8 nm and the optical amplifier spacing is 100 km. Only 16 erbium-doped fiber amplifiers (EDFAs) are used.
基金This work was supported by the National 863 Projectthe National Natural Science Foundation of Chinathe Pandeng Foundation of Northern Jiaotong University.
文摘In this paper, the dispersion compensation for 4×10 Gb/s. 400 km G.652 fiber by chirped optical fiber Bragg grating (FBG) is introduced. For the first time, we have measured and compensated the polarization mode dispersion (PMD) of FBG. which in each channel is less than 1.1 ps. When the bit error rate (BER) is 10-and the bit error is zero, the transmission power penalty of each channel is less than 2 dB, and the best result is negative which means that the receiver sensitivity is increased after transmission.
文摘With the development of optical communication systems in high bandwidth fiber, various degradations affect the propagation of light signals such as polarization mode dispersion which represents a temporal pulse broadening, it becomes troublesome from long and long distances for this, it is necessary to regenerate the signal optically, that is to say, the amplified (1R regeneration) , the reshaping (2R regeneration) and sometimes resynchronize to overcome the phenomenon of jitter time (3R regeneration). In this paper we study the contribution of 2R optical regenerator self-modulation to combat the phenomenon of polarization mode dispersion. The experiment is simulated with optisystem.