期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进Faster RCNN的钢板表面缺陷检测研究
1
作者 卢勇拾 张滢雪 +2 位作者 司占军 于彦辉 王庆 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第3期244-251,共8页
钢铁是我国工业生产的重要原材料之一,其表面质量问题会直接影响产品的使用,从而带来无法预知的风险,故对钢铁表面进行缺陷检测具有重要意义。而在缺陷检测过程中,存在因裂痕缺陷特征不明显,导致缺陷定位不准确以及检测难度高等问题。... 钢铁是我国工业生产的重要原材料之一,其表面质量问题会直接影响产品的使用,从而带来无法预知的风险,故对钢铁表面进行缺陷检测具有重要意义。而在缺陷检测过程中,存在因裂痕缺陷特征不明显,导致缺陷定位不准确以及检测难度高等问题。针对以上问题,本研究提出一种改进的Faster RCNN算法,在主干特征提取网络上引入自适应模块,增强网络提取有效特征的能力,同时使用DBSCAN聚类算法取得合适的先验框,大大提高了算法的检测效率。实验结果表明,改进的Faster RCNN算法模型对不明显的缺陷特征检测能力大幅度的提升,相比其他检测算法,在钢板表面缺陷检测中能达到高质量、缺陷定位准确、分类成功率高的效果。 展开更多
关键词 Faster RCNN dbsacn聚类 目标检测 锚框
下载PDF
Research on D2D Co-localization Algorithm Based on Clustering Filtering 被引量:1
2
作者 Jiawen Zhang Fuxing Yang +2 位作者 Zhongliang Deng Xiao Fu Jiazhi Han 《China Communications》 SCIE CSCD 2020年第8期121-132,共12页
Nowadays, most positioning systems carry out locational calculation based on the accurate location information of some devices in the network. However there is a deviation in the locational information of the part of ... Nowadays, most positioning systems carry out locational calculation based on the accurate location information of some devices in the network. However there is a deviation in the locational information of the part of the device, we need to reduce it in order to obtain higher positioning accuracy. In this paper, we proposed a new centralized D2D(Device-to-Device) co-location algorithm. This algorithm uses DBSACN(Density-Based Spatial Clustering of Applications with Noise) clustering to reduce the deviation of device location information. Numerical results show that the positioning accuracy of the centralized D2D co-localization algorithm is improved by 62.7% compared with the SPAWN algorithm, which positioning performance superior to the traditional co-localization algorithm. 展开更多
关键词 CO-LOCATION D2D CLUSTERING dbsacn
下载PDF
一种基于用户空间相似性的兴趣点推荐算法 被引量:1
3
作者 李华孝杨 徐青 +1 位作者 冯世盛 武蓓蓓 《信息工程大学学报》 2022年第3期320-325,共6页
位置社交网络(Location Based Social Network,LBSN)的发展,为兴趣点推荐提供丰富的数据资源。基于地理影响的推荐算法是兴趣点推荐的热门研究话题,而现有的推荐算法缺乏对用户个性化行为的分析。因此,提出一种基于用户空间相似性的兴... 位置社交网络(Location Based Social Network,LBSN)的发展,为兴趣点推荐提供丰富的数据资源。基于地理影响的推荐算法是兴趣点推荐的热门研究话题,而现有的推荐算法缺乏对用户个性化行为的分析。因此,提出一种基于用户空间相似性的兴趣点推荐算法。首先,利用用户签到数据构建空间分布相似性模型;其次,引入削减因子,提高具有相同签到记录的用户权重;最后,线性融合用户及空间分布性相似性模型对Top-N兴趣点进行推荐,并进行实验验证。实验结果表明,该算法有效提高了兴趣点推荐的质量。 展开更多
关键词 兴趣点推荐 空间相似性度量模型 KANN-dbsacn LBSN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部