Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter...Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature.展开更多
In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.Howe...In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.However,the dependence of DC microgrids on cyber-networks also makes them susceptible to cyber-attacks.Potential cyberattacks can disrupt power system facilities and result in significant economic and loss of life.To address this concern,this paper presents an attack-resilient control strategy for microgrids to ensure voltage regulation and power sharing with stable operation under cyber-attack on the actuators.This paper first formulates the cyber-security problem considering a distributed generation based microgrid using the converter model,after which an attack-resilient control is proposed to eliminate the actuator attack impact on the system.Steady state analysis and root locus validation illustrate the feasibility of the proposed method.The effectiveness of the proposed control scheme is demonstrated through simulation results.展开更多
基于移相加占空比控制策略的三有源桥TAB(triple active bridge)DC-DC变换器具有效率高和软开关范围可扩展等优点,但其小信号建模过程复杂、闭环控制环路参数整定困难。针对该问题,提出1种TAB工作在移相加占空比控制下的全阶连续广义状...基于移相加占空比控制策略的三有源桥TAB(triple active bridge)DC-DC变换器具有效率高和软开关范围可扩展等优点,但其小信号建模过程复杂、闭环控制环路参数整定困难。针对该问题,提出1种TAB工作在移相加占空比控制下的全阶连续广义状态平均建模和PI控制器设计方法。首先,分析TAB的运行原理和Y型等效结构;然后,结合移相加占空比控制的特点和交流方波源等效方法,推导出TAB的广义状态空间平均模型;接着,在推得模型的基础上求得输入到输出的传递函数,设计出PI控制器参数。最后,结合数字仿真及样机实验验证了所提方法的正确性及有效性。展开更多
文摘Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature.
基金supported by VILLUM FONDEN,Denmark under the VILLUM Investigator Grant(No.25920):Center for Research on Microgrids(CROM)。
文摘In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.However,the dependence of DC microgrids on cyber-networks also makes them susceptible to cyber-attacks.Potential cyberattacks can disrupt power system facilities and result in significant economic and loss of life.To address this concern,this paper presents an attack-resilient control strategy for microgrids to ensure voltage regulation and power sharing with stable operation under cyber-attack on the actuators.This paper first formulates the cyber-security problem considering a distributed generation based microgrid using the converter model,after which an attack-resilient control is proposed to eliminate the actuator attack impact on the system.Steady state analysis and root locus validation illustrate the feasibility of the proposed method.The effectiveness of the proposed control scheme is demonstrated through simulation results.
文摘基于移相加占空比控制策略的三有源桥TAB(triple active bridge)DC-DC变换器具有效率高和软开关范围可扩展等优点,但其小信号建模过程复杂、闭环控制环路参数整定困难。针对该问题,提出1种TAB工作在移相加占空比控制下的全阶连续广义状态平均建模和PI控制器设计方法。首先,分析TAB的运行原理和Y型等效结构;然后,结合移相加占空比控制的特点和交流方波源等效方法,推导出TAB的广义状态空间平均模型;接着,在推得模型的基础上求得输入到输出的传递函数,设计出PI控制器参数。最后,结合数字仿真及样机实验验证了所提方法的正确性及有效性。