A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is co...A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is correct and practical.展开更多
This paper presents the speed control of a separately excited DC motor using Neural Network (NN) controller in field weakening region. In armature control, speed controller has been used in outer loop while current co...This paper presents the speed control of a separately excited DC motor using Neural Network (NN) controller in field weakening region. In armature control, speed controller has been used in outer loop while current controller in inner loop is used. The function of NN is to predict the field current that realizes the field weakening to drive the motor over rated speed. The parameters of NN are optimized by the Social Spider Optimization (SSO) algorithm. The system has been implemented using MATLAB/SIMULINK software. The simulation results show that the proposed method gives a good performance and is feasible to be applied instead of others conventional combined control methods.展开更多
文摘A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is correct and practical.
文摘This paper presents the speed control of a separately excited DC motor using Neural Network (NN) controller in field weakening region. In armature control, speed controller has been used in outer loop while current controller in inner loop is used. The function of NN is to predict the field current that realizes the field weakening to drive the motor over rated speed. The parameters of NN are optimized by the Social Spider Optimization (SSO) algorithm. The system has been implemented using MATLAB/SIMULINK software. The simulation results show that the proposed method gives a good performance and is feasible to be applied instead of others conventional combined control methods.