Firstly, relevant stress properties of millisecond level breaking process and microsecond level commutation process of hybrid HVDC circuit breaker are studied in detail on the basis of the analysis for the application...Firstly, relevant stress properties of millisecond level breaking process and microsecond level commutation process of hybrid HVDC circuit breaker are studied in detail on the basis of the analysis for the application environment and topological structure and operating principles of hybrid circuit breakers, and key stress parameters in transient state process of two time dimensions are extracted. The established digital simulation circuit for PSCAD/EMTDC device-level operation of the circuit breaker has verified the stress properties of millisecond level breaking process and microsecond level commutation process. Then, equivalent test method, circuits and parameters based on LC power supply are proposed on the basis of stress extraction. Finally, the results of implemented breaking tests for complete 200 kV circuit breaker, 100 kV and 50 kV circuit breaker units, as well as single power electronic module have verified the accuracy of the simulation circuit and mathematical analysis. The result of this paper can be a guide to electrical structure and test system design of hybrid HVDC circuit breaker.展开更多
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
In traditional hybrid DC circuit breakers(HCBs)schemes,complex equipment is usually required to ensure current commutation from mechanical to semiconductor switches,which cause not only additional construction costs a...In traditional hybrid DC circuit breakers(HCBs)schemes,complex equipment is usually required to ensure current commutation from mechanical to semiconductor switches,which cause not only additional construction costs and volume but also additional losses and maintenance work.Different from this condition,a low-loss and compact HCB scheme that does not use separate current commutation equipment is proposed in this study.By rationally using the charge and discharge of the snubber capacitor,the self-commutated semiconductor switch(SCS)module can integrate both the current commutation and shutdown functions,thereby greatly reducing cost and volume.The working process is discussed and analyzed in detail,and then a 10-kA prototype is developed and tested,which verifies the feasibility and effectiveness of the proposed scheme.Index Terms-HVDC circuit breakers,hybrid DC circuit breakers(HCBs),self-commutated semiconductor switch(SCS).展开更多
The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power thr...The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power through overhead lines,HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults.To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs,an adaptive reclosing scheme based on traveling wave injection is proposed in this paper.The scheme injects traveling wave signal into the fault dc line through the additionally configured auxiliary discharge branch in the HCB,and then uses the reflection characteristic of the traveling wave signal on the dc line to identify temporary and permanent faults,to be able to realize fast reclosing when the temporary fault occurs and reliably avoid reclosing after the permanent fault occurs.The test results in the simulation model of the four-terminal dc grid show that the proposed adaptive reclosing scheme can quickly and reliably identify temporary and permanent faults,greatly shorten the power outage time of temporary faults.In addition,it has the advantages of easiness to implement,high reliability,robustness to high-resistance fault and no dead zone,etc.展开更多
能量路由器的核心元件为双有源桥(dual active bridge,DAB)直流变压器,针对其短路故障时电流上升速率快,峰值大,导致DAB内部电力电子器件闭锁的问题,该文提出一种具有限流型结构的直流变压器,限流装置结构为从DAB高压侧H桥连接单相整流...能量路由器的核心元件为双有源桥(dual active bridge,DAB)直流变压器,针对其短路故障时电流上升速率快,峰值大,导致DAB内部电力电子器件闭锁的问题,该文提出一种具有限流型结构的直流变压器,限流装置结构为从DAB高压侧H桥连接单相整流桥,再与输出端口的限流电感相连。当直流系统发生短路故障时,限流型直流变压器采用混合控制算法进行整流,为限流电感提供钳位电压,限制故障电流的峰值,并与断路器配合实现无弧开断,该方法避免DAB中电力电子器件发生闭锁,快速实现故障限流和隔离。在仿真系统中搭建了基于10kV/750V直流变压器的限流型直流变压器的模型,仿真结果表明限流型直流变压器与断路器配合实现故障限流和隔离的有效性和可行性。展开更多
提出了一种由集成直流断路器的模块化多电平换流器(modular multilevel converter integrated with DC circuit breaker,IDCB-MMC)和晶闸管换流器组成的混合直流输电系统。在发生直流短路故障时,通过换流器与直流断路器在控制上的配合,I...提出了一种由集成直流断路器的模块化多电平换流器(modular multilevel converter integrated with DC circuit breaker,IDCB-MMC)和晶闸管换流器组成的混合直流输电系统。在发生直流短路故障时,通过换流器与直流断路器在控制上的配合,IDCB-MMC可以将故障电流的能量转移到并联于直流母线间的能量吸收支路中,从而可以避免使用成本高且占地大的电力电子开关支路。晶闸管换流器则可以通过快速转换到逆变状态实现直流故障电流的清除。对1 000 MW/±320 kV的双端混合直流输电系统中的一极进行了仿真研究。仿真结果表明IDCB-MMC可以有效清除直流短路故障电流,实现系统的自动恢复,结果也验证了由IDCB-MMC与晶闸管换流器组成的混合直流输电系统的可行性。展开更多
基金supported by SGCC Scientific and Technological Project(52110116004W)
文摘Firstly, relevant stress properties of millisecond level breaking process and microsecond level commutation process of hybrid HVDC circuit breaker are studied in detail on the basis of the analysis for the application environment and topological structure and operating principles of hybrid circuit breakers, and key stress parameters in transient state process of two time dimensions are extracted. The established digital simulation circuit for PSCAD/EMTDC device-level operation of the circuit breaker has verified the stress properties of millisecond level breaking process and microsecond level commutation process. Then, equivalent test method, circuits and parameters based on LC power supply are proposed on the basis of stress extraction. Finally, the results of implemented breaking tests for complete 200 kV circuit breaker, 100 kV and 50 kV circuit breaker units, as well as single power electronic module have verified the accuracy of the simulation circuit and mathematical analysis. The result of this paper can be a guide to electrical structure and test system design of hybrid HVDC circuit breaker.
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.
基金supported by the National Natural Science Foundation of China(No.52107004)the China Postdoctoral Science Foundation(No.2020M680484 and No.2021T140201)the Fundamental Research Funds for the Central Universities(No.2021MS003)。
文摘In traditional hybrid DC circuit breakers(HCBs)schemes,complex equipment is usually required to ensure current commutation from mechanical to semiconductor switches,which cause not only additional construction costs and volume but also additional losses and maintenance work.Different from this condition,a low-loss and compact HCB scheme that does not use separate current commutation equipment is proposed in this study.By rationally using the charge and discharge of the snubber capacitor,the self-commutated semiconductor switch(SCS)module can integrate both the current commutation and shutdown functions,thereby greatly reducing cost and volume.The working process is discussed and analyzed in detail,and then a 10-kA prototype is developed and tested,which verifies the feasibility and effectiveness of the proposed scheme.Index Terms-HVDC circuit breakers,hybrid DC circuit breakers(HCBs),self-commutated semiconductor switch(SCS).
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant 520201210025。
文摘The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power through overhead lines,HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults.To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs,an adaptive reclosing scheme based on traveling wave injection is proposed in this paper.The scheme injects traveling wave signal into the fault dc line through the additionally configured auxiliary discharge branch in the HCB,and then uses the reflection characteristic of the traveling wave signal on the dc line to identify temporary and permanent faults,to be able to realize fast reclosing when the temporary fault occurs and reliably avoid reclosing after the permanent fault occurs.The test results in the simulation model of the four-terminal dc grid show that the proposed adaptive reclosing scheme can quickly and reliably identify temporary and permanent faults,greatly shorten the power outage time of temporary faults.In addition,it has the advantages of easiness to implement,high reliability,robustness to high-resistance fault and no dead zone,etc.
文摘能量路由器的核心元件为双有源桥(dual active bridge,DAB)直流变压器,针对其短路故障时电流上升速率快,峰值大,导致DAB内部电力电子器件闭锁的问题,该文提出一种具有限流型结构的直流变压器,限流装置结构为从DAB高压侧H桥连接单相整流桥,再与输出端口的限流电感相连。当直流系统发生短路故障时,限流型直流变压器采用混合控制算法进行整流,为限流电感提供钳位电压,限制故障电流的峰值,并与断路器配合实现无弧开断,该方法避免DAB中电力电子器件发生闭锁,快速实现故障限流和隔离。在仿真系统中搭建了基于10kV/750V直流变压器的限流型直流变压器的模型,仿真结果表明限流型直流变压器与断路器配合实现故障限流和隔离的有效性和可行性。