Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection ...Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.展开更多
On March 10, being the fir st in the world, the 500-kV double-circuit DC transmission line—GE—Hu upgrading project formally passed completion-acceptance, and
This paper proposes a hybrid submodule modular multilevel converter(MMC)topology which is suitable for multi terminal direct current(MTDC)transmission systems.Each arm of the proposed MMC topology consists of a half-b...This paper proposes a hybrid submodule modular multilevel converter(MMC)topology which is suitable for multi terminal direct current(MTDC)transmission systems.Each arm of the proposed MMC topology consists of a half-bridge submodule(HBSM)branch and two parallel full-bridge submodule(FBSM)branches.Comparing with the conventional MTDC transmission system,the proposed topology can selectively block the DC fault current and isolate the corresponding fault line without expensive DC circuit breakers(DCCBs).Thus,the influence range of the DC fault can be reduced and the reliability of the power supply can be improved as well.The corresponding modulation and voltage balancing strategies are developed for the proposed hybrid MMC topology.The feasibility of the proposed topology and control strategy is verified in the MATLAB/Simulink simulation.展开更多
Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagn...Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.展开更多
A conceptual superconducting DC cable model is designed and its magnetic fields distribution is analyzed with Ansoft/Maxwell soft. A DC Power transmission system is also studied by using the Matlab/Simulink. With the ...A conceptual superconducting DC cable model is designed and its magnetic fields distribution is analyzed with Ansoft/Maxwell soft. A DC Power transmission system is also studied by using the Matlab/Simulink. With the DC Line and AC Ground Fault, the system losses analysis is introduced.The analysis results mainly include the magnetic fields distribution of the HTS cable model with Ansoft/Maxwell, the system loss, the DC Line and AC Ground Fault with Matlab/Simulation.展开更多
The DC grid technology of multi-power supply and multi-drop-point power reception is an effective solution for large-scale renewable energy integration into the power grid.Line-commutated converter-Voltage source conv...The DC grid technology of multi-power supply and multi-drop-point power reception is an effective solution for large-scale renewable energy integration into the power grid.Line-commutated converter-Voltage source converter(LCC-VSC)power grids are one of the more important developmental directions of the future power grid that have occured in recent years.But the multi-terminal high voltage direct current system has the problems of inconsistent boundary characteristics,inconsistent control,and fault response characteristics,which puts higher requirements on the protection scheme.Thus,a completely new protection principle is proposed in this paper.Firstly,the fault characteristics of distributed capacitance current are analyzed.The reactive power calculated by the distribution parameters of different frequencies is different.Subsequently,the fault characteristics of DC reactive power are analyzed,and a DC reactive power extraction algorithm is proposed.The polarity of the multi-band DC reactive power is used to construct the protection scheme.Finally,the LCC-VSC power grid model verifies the correctness and superiority of the proposed protection scheme.The proposed scheme uses DC reactive power instead of fault current to solve the long delay problem caused by distributed capacitance.Compared with the prior art,the proposed solution is not affected by distributed capacitance and has a stronger anti-interference ability(600Ω+10 dB+1 ms).展开更多
Line-commutated converter-voltage source converter(LCC-VSC)power transmission technology does not have the problem of communication failure very usually.It therefore can support the long-distance,long-capacity transmi...Line-commutated converter-voltage source converter(LCC-VSC)power transmission technology does not have the problem of communication failure very usually.It therefore can support the long-distance,long-capacity transmission of electric energy.However,factors such as topology,control strategy,and short-circuit capacities make the traditional protection principles not fully applicable to LCC-VSC hybrid transmission systems.To enhance the reliability of hybrid DC systems,a single-ended principle based on transmission coefficients is proposed and produced.First,the equivalent circuit of the LCC-VSC hybrid DC system is analyzed and the expression of the first traveling wave is deduced accordingly.Then,the concept of multi-frequency transmission coefficients is proposed by analyzing the amplitude-frequency,and the characteristics of each element.Finally,the LCC-VSCDC system model is built to verify the reliability and superiority of the principle itself.Theoretical analysis and experimental verification show that the principle has strong interference resistance.展开更多
This paper discusses the characteristics of DC transmission common system ground electrode type and shared ground electrode, established the mathematical model of two circuit DC systems share ground electrode, analyze...This paper discusses the characteristics of DC transmission common system ground electrode type and shared ground electrode, established the mathematical model of two circuit DC systems share ground electrode, analyze effects of the shared loop ground DC transmission system electrode on the operation of HVDC system size under different operation modes, and compare with the independent ground electrode, ground electrode impact on environment under different operation mode, and the paper finally puts forward some solving measures for the influence of the shared ground electrode on the environment and public ground electrode effects on DC system operation problems.展开更多
This paper introduces the working principle of HVDC control and protection system. And the paper summarizes the flexible HVDC technology features and application fields and describes the composition and software intel...This paper introduces the working principle of HVDC control and protection system. And the paper summarizes the flexible HVDC technology features and application fields and describes the composition and software intelligent flexible HVDC control and protection system configuration. Finally, the simulation results are also given, experimental results show: HVDC flexible intelligent control and protection has a good control effect in the steady state and transient process, suitable for practical engineering application.展开更多
Rapid development of renewable energy in China is driving a major shift in the characteristics and control requirements of the electricity grid.Since the best renewable energy resources are far away from load centers ...Rapid development of renewable energy in China is driving a major shift in the characteristics and control requirements of the electricity grid.Since the best renewable energy resources are far away from load centers in the east and southeast,transmission over long distances is required.Over 20 high-voltage DC(HVDC)transmission lines,with a combined capacity exceeding 150 GW,are in operation or are currently under construction.This rapid expansion of new generation and transmission capacities based on power electronics starts to change the characteristics of the grid,especially in areas where they concentrate,creating new stability problems and operational challenges.New system theories and technologies are required to support the development and operation of a future grid that relies more and more on power electronics.This paper highlights the characteristics of power electronics as used in renewable energy generation and HVDC transmission systems,discusses the impacts of these power-electronics-based assets on grid stability and operational requirements,and identifies opportunities for the development of both new system theories and system technologies to support a national energy policy that emphasizes the use of clean energy.展开更多
In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind f...In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system.展开更多
This paper studies the operation,analysis and experiments of multilevel high frequency link transformers(MHFLT)based on modular multilevel converters(MMC)for high voltage DC applications.The multilevel dual active pha...This paper studies the operation,analysis and experiments of multilevel high frequency link transformers(MHFLT)based on modular multilevel converters(MMC)for high voltage DC applications.The multilevel dual active phase shift is proposed to operate the MHFLT using a high switching frequency,which brings about many advantages and makes the operation quite different from that of the traditional DC transformer(DCT)based on a dual active bridge and the fundamental frequency MMC widely used in flexible HVDC transmission.Specifically,MHFLT is suitable for high voltage levels,which is due to its good switching characterization,ability to cut itself off from an external fault,and it can also achieve redundancy operations when a sub-module fault occurs.In this paper,the operation,modulation method,multilevel high frequency link voltage,current,and power characterization,high frequency commutation,and switching characterization are analyzed comprehensively;the pulse rotation and distributed delay control,and fault handling strategies of MHFLT are then proposed.Finally,a prototype is built,and the experimental results verify the correctness and effectiveness of the proposed solution.展开更多
The fusion splicing of double-clad (DC) specialty fibers based on active alignment is crucial to the investigation of high-power monolithic fiber lasers. Given the wave-guiding characteristic of DC fiber, a light st...The fusion splicing of double-clad (DC) specialty fibers based on active alignment is crucial to the investigation of high-power monolithic fiber lasers. Given the wave-guiding characteristic of DC fiber, a light stripper is introduced in an active alignment experiment. We propose a novel method for stripping light that is convenient, highly effcient, and low cost. This method is also effective for low-numerical-aperture beams that escape from the fiber core. A splice loss as low as 0.05 dB is achieved.展开更多
A back-illuminated mesa-structure InGaAs/InP charge-compensated uni-traveling-carrier (UTC) photodi- ode (PD) is fabricated, and its saturation characteristics are investigated. The responsivity of the 40-μm- dia...A back-illuminated mesa-structure InGaAs/InP charge-compensated uni-traveling-carrier (UTC) photodi- ode (PD) is fabricated, and its saturation characteristics are investigated. The responsivity of the 40-μm- diameter PD is as high as 0.83 A/W, and the direct current (DC) saturation current is up to 275 mA. The 1-dB compression point at the 3-dB cutoff frequency of 9 GHz is measured to be 100 mA, corresponding to an output radio frequency (RF) power of up to 20.1 dBm. According to the calculated electric field distributions in the depleted region under both DC and alternating current (AC) conditions, the saturation of the UTC-PD is cansed hv cnmnlete field screening at high optical iniectinn levels展开更多
基金supported by the Joint Research Fund in Smart Grid(U23B20120)under cooperative agreement between the National Natural Science Foundation of China and State Grid Corporation of China。
文摘Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.
文摘On March 10, being the fir st in the world, the 500-kV double-circuit DC transmission line—GE—Hu upgrading project formally passed completion-acceptance, and
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51637007in part by the Science and Technology Projects of State Grid Corporation of China under project SG-TYHT/16-JS-198.
文摘This paper proposes a hybrid submodule modular multilevel converter(MMC)topology which is suitable for multi terminal direct current(MTDC)transmission systems.Each arm of the proposed MMC topology consists of a half-bridge submodule(HBSM)branch and two parallel full-bridge submodule(FBSM)branches.Comparing with the conventional MTDC transmission system,the proposed topology can selectively block the DC fault current and isolate the corresponding fault line without expensive DC circuit breakers(DCCBs).Thus,the influence range of the DC fault can be reduced and the reliability of the power supply can be improved as well.The corresponding modulation and voltage balancing strategies are developed for the proposed hybrid MMC topology.The feasibility of the proposed topology and control strategy is verified in the MATLAB/Simulink simulation.
基金funded by a science and technology project of State Grid Corporation of China“Comparative Analysis of Long-Term Measurement and Prediction of the Ground Synthetic Electric Field of±800 kV DC Transmission Line”(GYW11201907738)Paulo R.F.Rocha acknowledges the support and funding from the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Program(Grant Agreement No.947897).
文摘Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.
文摘A conceptual superconducting DC cable model is designed and its magnetic fields distribution is analyzed with Ansoft/Maxwell soft. A DC Power transmission system is also studied by using the Matlab/Simulink. With the DC Line and AC Ground Fault, the system losses analysis is introduced.The analysis results mainly include the magnetic fields distribution of the HTS cable model with Ansoft/Maxwell, the system loss, the DC Line and AC Ground Fault with Matlab/Simulation.
基金supported by the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2066210).
文摘The DC grid technology of multi-power supply and multi-drop-point power reception is an effective solution for large-scale renewable energy integration into the power grid.Line-commutated converter-Voltage source converter(LCC-VSC)power grids are one of the more important developmental directions of the future power grid that have occured in recent years.But the multi-terminal high voltage direct current system has the problems of inconsistent boundary characteristics,inconsistent control,and fault response characteristics,which puts higher requirements on the protection scheme.Thus,a completely new protection principle is proposed in this paper.Firstly,the fault characteristics of distributed capacitance current are analyzed.The reactive power calculated by the distribution parameters of different frequencies is different.Subsequently,the fault characteristics of DC reactive power are analyzed,and a DC reactive power extraction algorithm is proposed.The polarity of the multi-band DC reactive power is used to construct the protection scheme.Finally,the LCC-VSC power grid model verifies the correctness and superiority of the proposed protection scheme.The proposed scheme uses DC reactive power instead of fault current to solve the long delay problem caused by distributed capacitance.Compared with the prior art,the proposed solution is not affected by distributed capacitance and has a stronger anti-interference ability(600Ω+10 dB+1 ms).
基金supported by the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2066210).
文摘Line-commutated converter-voltage source converter(LCC-VSC)power transmission technology does not have the problem of communication failure very usually.It therefore can support the long-distance,long-capacity transmission of electric energy.However,factors such as topology,control strategy,and short-circuit capacities make the traditional protection principles not fully applicable to LCC-VSC hybrid transmission systems.To enhance the reliability of hybrid DC systems,a single-ended principle based on transmission coefficients is proposed and produced.First,the equivalent circuit of the LCC-VSC hybrid DC system is analyzed and the expression of the first traveling wave is deduced accordingly.Then,the concept of multi-frequency transmission coefficients is proposed by analyzing the amplitude-frequency,and the characteristics of each element.Finally,the LCC-VSCDC system model is built to verify the reliability and superiority of the principle itself.Theoretical analysis and experimental verification show that the principle has strong interference resistance.
文摘This paper discusses the characteristics of DC transmission common system ground electrode type and shared ground electrode, established the mathematical model of two circuit DC systems share ground electrode, analyze effects of the shared loop ground DC transmission system electrode on the operation of HVDC system size under different operation modes, and compare with the independent ground electrode, ground electrode impact on environment under different operation mode, and the paper finally puts forward some solving measures for the influence of the shared ground electrode on the environment and public ground electrode effects on DC system operation problems.
文摘This paper introduces the working principle of HVDC control and protection system. And the paper summarizes the flexible HVDC technology features and application fields and describes the composition and software intelligent flexible HVDC control and protection system configuration. Finally, the simulation results are also given, experimental results show: HVDC flexible intelligent control and protection has a good control effect in the steady state and transient process, suitable for practical engineering application.
基金supported in part by the State Grid Science and Technology Project“Impedance-Based Modeling and Control of Distributed Generation Systems”(NYB1720170218).
文摘Rapid development of renewable energy in China is driving a major shift in the characteristics and control requirements of the electricity grid.Since the best renewable energy resources are far away from load centers in the east and southeast,transmission over long distances is required.Over 20 high-voltage DC(HVDC)transmission lines,with a combined capacity exceeding 150 GW,are in operation or are currently under construction.This rapid expansion of new generation and transmission capacities based on power electronics starts to change the characteristics of the grid,especially in areas where they concentrate,creating new stability problems and operational challenges.New system theories and technologies are required to support the development and operation of a future grid that relies more and more on power electronics.This paper highlights the characteristics of power electronics as used in renewable energy generation and HVDC transmission systems,discusses the impacts of these power-electronics-based assets on grid stability and operational requirements,and identifies opportunities for the development of both new system theories and system technologies to support a national energy policy that emphasizes the use of clean energy.
基金This study was supported in part by the National Key R&D Program of China(2017YFB0902100).
文摘In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system.
基金This work was supported in part by National Natural Science Foundation of China(No.51777012/51477011)Key Science and Technology Projects of China Southern Power Grid Corporation(No.090000KK52180116).
文摘This paper studies the operation,analysis and experiments of multilevel high frequency link transformers(MHFLT)based on modular multilevel converters(MMC)for high voltage DC applications.The multilevel dual active phase shift is proposed to operate the MHFLT using a high switching frequency,which brings about many advantages and makes the operation quite different from that of the traditional DC transformer(DCT)based on a dual active bridge and the fundamental frequency MMC widely used in flexible HVDC transmission.Specifically,MHFLT is suitable for high voltage levels,which is due to its good switching characterization,ability to cut itself off from an external fault,and it can also achieve redundancy operations when a sub-module fault occurs.In this paper,the operation,modulation method,multilevel high frequency link voltage,current,and power characterization,high frequency commutation,and switching characterization are analyzed comprehensively;the pulse rotation and distributed delay control,and fault handling strategies of MHFLT are then proposed.Finally,a prototype is built,and the experimental results verify the correctness and effectiveness of the proposed solution.
文摘The fusion splicing of double-clad (DC) specialty fibers based on active alignment is crucial to the investigation of high-power monolithic fiber lasers. Given the wave-guiding characteristic of DC fiber, a light stripper is introduced in an active alignment experiment. We propose a novel method for stripping light that is convenient, highly effcient, and low cost. This method is also effective for low-numerical-aperture beams that escape from the fiber core. A splice loss as low as 0.05 dB is achieved.
基金supported by the National Basic Research Program of China(Nos.2011CB301902 and 2011CB301903)the High Technology Research and Development Program of China(Nos.2007AA05Z429 and 2008AA03A194)+2 种基金the National Natural Science Foundation of China(Nos.60723002,50706022,60977022,and 51002085)the Beijing Natural Science Foundation(No. 4091001)the Industry,Academia and Research Combining and Public Science and Technology Special Program of Shenzhen(No.08CXY-14)
文摘A back-illuminated mesa-structure InGaAs/InP charge-compensated uni-traveling-carrier (UTC) photodi- ode (PD) is fabricated, and its saturation characteristics are investigated. The responsivity of the 40-μm- diameter PD is as high as 0.83 A/W, and the direct current (DC) saturation current is up to 275 mA. The 1-dB compression point at the 3-dB cutoff frequency of 9 GHz is measured to be 100 mA, corresponding to an output radio frequency (RF) power of up to 20.1 dBm. According to the calculated electric field distributions in the depleted region under both DC and alternating current (AC) conditions, the saturation of the UTC-PD is cansed hv cnmnlete field screening at high optical iniectinn levels