A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel convert...A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel converter (MMC). The FBSM-MMC is a novel type of voltage source converter (VSC) and can directly control the output DC voltage and conduct bipolar currents, thus flexibly controlling the power flow of the urban rail transit catenary. The proposed topology can overcome the inherent disadvantages of the output voltage drop in the diode rectifier units, increase the power supply distance and reduce the number of traction substations. The flexible DC technology can coordinate multiple FBSM-MMCs in a wide area and jointly complete the bidirectional control of catenary power flow during the operation of the electric locomotive, so as to realize the local consumption and optimal utilization of the recovered braking energy of the train. In addition, the FBSM-MMCs can also adjust the output current when the locomotive is out of service to prevent the catenary from icing in winter. The working modes of the proposed topology are illustrated in detail and the control strategy is specially designed for normal locomotive operations and catenary de-icing. Simulation cases conducted by PSCAD/EMTDC validate the proposed topology and its control strategy.展开更多
The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the...The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.展开更多
Multi-converter approach based on the series and parallel connection topology of modular power converters has been proposed to realize higher power density DC-DC converter. The availability of the proposed approach ha...Multi-converter approach based on the series and parallel connection topology of modular power converters has been proposed to realize higher power density DC-DC converter. The availability of the proposed approach has been verified through the design consideration and the experiment. The design consideration for two DC-DC converters has been carried out by utilizing the power converter exact loss simulator, and the design parameters to maximize their power densities have been extracted taking the trade-off between the conversion efficiency and the power density into account. The prototypes of a 2,400 W, 256-384 V boost chopper using SiC-MOSFETs and a 300 W, 32-48 V GaN-FETs boost chopper have been also developed based on the design. The SiC chopper achieved the efficiency of 97.8% and the power density of 12,8 W/cm3, and the GaN chopper accomplished 98.9% and 18.6 W/cm3 in the experiment. These results show the validity of the design and the availability of the proposed approach. The multi-converter approach enables the cost reduction of the modular power converters, and contributes to realizing the widespread use of power electronics converters in the future 380 V DC distribution system.展开更多
In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A ...In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A two-loop control is employed for a buck converter. The robustness of the sliding mode controlled buck converter system is tested for step load changes and input voltage variations. The theoretical predictions are validated by means of simulations. Matlab/Simulink is used for the simulations. The simulation results are presented. The buck converter is tested with operating point changes and parameter uncertainties. Fast dynamic response of the output voltage and robustness to load and input voltage variations are obtained.展开更多
以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽...以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽范围的输入电压转换为稳定电压,保证了后级半桥LLC谐振拓扑的高效率运行。通过搭建实验平台并进行相关实验,结果验证了所提DC-DC变换器的可行性和正确性。展开更多
This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation.In order to improve its radiation tolerant abilities,circuit-level and device-leve...This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation.In order to improve its radiation tolerant abilities,circuit-level and device-level RHBD(radiation-hardening by design) techniques were employed.Adaptive slope compensation was used to improve the inherent instability.The H-gate MOS transistors,annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose.A boost converter was fabricated by a standard commercial 0.35μm CMOS process.The hardened design converter can work properly in a wide range of total dose radiation environments,with increasing total dose radiation.The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance.展开更多
基金supported in part by National Key Research and Development Program of China(2017YFB1200801)Continuous Co-phase Traction Power System based on Static Power Converter(20192001148).
文摘A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel converter (MMC). The FBSM-MMC is a novel type of voltage source converter (VSC) and can directly control the output DC voltage and conduct bipolar currents, thus flexibly controlling the power flow of the urban rail transit catenary. The proposed topology can overcome the inherent disadvantages of the output voltage drop in the diode rectifier units, increase the power supply distance and reduce the number of traction substations. The flexible DC technology can coordinate multiple FBSM-MMCs in a wide area and jointly complete the bidirectional control of catenary power flow during the operation of the electric locomotive, so as to realize the local consumption and optimal utilization of the recovered braking energy of the train. In addition, the FBSM-MMCs can also adjust the output current when the locomotive is out of service to prevent the catenary from icing in winter. The working modes of the proposed topology are illustrated in detail and the control strategy is specially designed for normal locomotive operations and catenary de-icing. Simulation cases conducted by PSCAD/EMTDC validate the proposed topology and its control strategy.
文摘The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.
文摘Multi-converter approach based on the series and parallel connection topology of modular power converters has been proposed to realize higher power density DC-DC converter. The availability of the proposed approach has been verified through the design consideration and the experiment. The design consideration for two DC-DC converters has been carried out by utilizing the power converter exact loss simulator, and the design parameters to maximize their power densities have been extracted taking the trade-off between the conversion efficiency and the power density into account. The prototypes of a 2,400 W, 256-384 V boost chopper using SiC-MOSFETs and a 300 W, 32-48 V GaN-FETs boost chopper have been also developed based on the design. The SiC chopper achieved the efficiency of 97.8% and the power density of 12,8 W/cm3, and the GaN chopper accomplished 98.9% and 18.6 W/cm3 in the experiment. These results show the validity of the design and the availability of the proposed approach. The multi-converter approach enables the cost reduction of the modular power converters, and contributes to realizing the widespread use of power electronics converters in the future 380 V DC distribution system.
文摘In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A two-loop control is employed for a buck converter. The robustness of the sliding mode controlled buck converter system is tested for step load changes and input voltage variations. The theoretical predictions are validated by means of simulations. Matlab/Simulink is used for the simulations. The simulation results are presented. The buck converter is tested with operating point changes and parameter uncertainties. Fast dynamic response of the output voltage and robustness to load and input voltage variations are obtained.
文摘以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽范围的输入电压转换为稳定电压,保证了后级半桥LLC谐振拓扑的高效率运行。通过搭建实验平台并进行相关实验,结果验证了所提DC-DC变换器的可行性和正确性。
基金Project supported by the National Defense Pre-Research Project of China(No.51311050202)
文摘This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation.In order to improve its radiation tolerant abilities,circuit-level and device-level RHBD(radiation-hardening by design) techniques were employed.Adaptive slope compensation was used to improve the inherent instability.The H-gate MOS transistors,annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose.A boost converter was fabricated by a standard commercial 0.35μm CMOS process.The hardened design converter can work properly in a wide range of total dose radiation environments,with increasing total dose radiation.The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance.