In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this ...In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this paper.Generally,the analysis of back-EMF for the machine with complex electromagnetic structure such as DCHES machine should utilize 3-D finite element analysis(FEA),which will require huge resources and computing time.In order to avoid using 3-D FEA to analyze the back-EMF of complex structure,an analytical method of calculating back-EMF is presented in this paper.The electromagnetic field in 3-D space can be simplified as a 2-D field by dividing the 3-D field into several simple zones,the resultant effect equals to the summation of every single 2-D field's effect.According to electromagnetic theory,the analytical formula of back-EMF is obtained on the basis of Fourier series.The influence of main parameters on back-EMF waveform under sine and trapezoidal flux distribution is discussed respectively.The theoretical result shows that the trapezoidal air-gap flux distribution would generate a sine back-EMF.Finally,the presented analytical method is verified and evaluated with experimental results.展开更多
基金Supported in part by the Natural Science Foundation of Henan Province under Grant 162300410319the Education Department of Henan Province under Grant 16A470026,Zhengzhou University of Light Industry under Grant 2014BSJJ040the office of Science and Technology in Henan Province under Grant 172102310254.
文摘In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this paper.Generally,the analysis of back-EMF for the machine with complex electromagnetic structure such as DCHES machine should utilize 3-D finite element analysis(FEA),which will require huge resources and computing time.In order to avoid using 3-D FEA to analyze the back-EMF of complex structure,an analytical method of calculating back-EMF is presented in this paper.The electromagnetic field in 3-D space can be simplified as a 2-D field by dividing the 3-D field into several simple zones,the resultant effect equals to the summation of every single 2-D field's effect.According to electromagnetic theory,the analytical formula of back-EMF is obtained on the basis of Fourier series.The influence of main parameters on back-EMF waveform under sine and trapezoidal flux distribution is discussed respectively.The theoretical result shows that the trapezoidal air-gap flux distribution would generate a sine back-EMF.Finally,the presented analytical method is verified and evaluated with experimental results.