The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to de...The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to determine the initiation site and the failure mechanism. Evolution of the microstructure was investigated by TEM observation. The results show that fatigue limit of DD6 alloy with 0.34%Hf is a little smaller than that of the alloy with 0.10%Hf. The fatigue cracks initiated on the surface or near the surface of the specimens. The crack would propagate along { 111 } octahedral slip planes, rather than perpendicular to the loading axis of specimen. Typical fatigue striation formed in steady propagation of fatigue crack. The fracture mechanisms of the high cycle fatigue of DD6 alloys with 0.10%Hf and 0.34%Hf are quasi-cleavage fracture. Different types of dislocation structures were developed during high cycle fatigue deformation.展开更多
The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was anal...The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.展开更多
Transient Liquid Phase Diffusion bonding (TLP bonding) is an effective method to achieve excellent joint of DD6, which is a new generation single crystal superalloy to manufacture aero-engine turbine blades. In this p...Transient Liquid Phase Diffusion bonding (TLP bonding) is an effective method to achieve excellent joint of DD6, which is a new generation single crystal superalloy to manufacture aero-engine turbine blades. In this paper, the interlayer alloys for DD6 TLP bonding were designed. The alloy foils with thickness 40 μm ~ 60 μm, width 4 mm were prepared by using a single roller rapid solidification apparatus and the TLP bonding of DD6 was conducted. Then the joint microstructure and alloying elements diffusion behaviors were analyzed. The results indicate that microstructures of interlayer alloys prepared are fine and homogeneous, the melting point range of alloys from 1070°C to 1074°C and their melting temperature interval is merely 20°C, when the chemical composition of alloys are 1.5 ~ 2.0Cr, 3.2 ~ 4.0W, 3.7 ~ 4.5Co, 2.2 ~ 3.0Al, 0.7 ~ 1.0Mo, 3.2B, remain Ni (wt%). When the welding parameters are bonding temperature 1200?C, holding time 8.0 hour and welding pressure 0.3 MPa, the compacted joints obtained and the microstructure of TLP bonding seams were similar to base metal. The bonding joint is composed of weld center zone, isothermal solidification zone and diffusion-affected zone. Within joint, the elements diffusion is sufficient and borides in the diffusion zone are fewer.展开更多
The samples of single crystal superalloy DD6 are grit blasted and then heat treated either with the standard heat treatment procedure or in the temperature range of 1 000-1 250 ℃ for 4-16 h at vacuum atmosphere, then...The samples of single crystal superalloy DD6 are grit blasted and then heat treated either with the standard heat treatment procedure or in the temperature range of 1 000-1 250 ℃ for 4-16 h at vacuum atmosphere, then the recrystallization behavior of DD6 alloy is investigated. The results show that the equiaxed recrystallization grains form in the 7 phase region where the as-cast γ' phases have been dissolved completely, and cellular recrystallization forms in the region where the ascast γ' phases have been dissolved partially. The cellular recrystallization area consists of cellular grains, and the cellular grain consists of cubic γ' phase, lamellar γ' phase and γ+γ'. The coexistence of the equiaxed recrystallization zones and cellular recrystallization zones is a re- crystallized characteristic of the cold worked single crystal samples which are heat treated at a temperature lower than the solu- tion temperature. When the heating temperature is higher than 1 150 ℃, with the increase of heat treating temperature, the equiaxed recrystallization zone expands, whereas the cellular recrystallization zone shrinks. All the deformed regions are consumed by equiaxed recrystallization after annealing at solution temperature.展开更多
DD6 single crystal superalloy slabs were prepared with seed method in the direetionally solidified furnace with high temperature gradient. The transverse stress rupture properties and fracture hehaviour of the alloy a...DD6 single crystal superalloy slabs were prepared with seed method in the direetionally solidified furnace with high temperature gradient. The transverse stress rupture properties and fracture hehaviour of the alloy at 760 ℃/758 MPa, 850 ℃/550 MPa and 980 ℃/250 MPa were investigated and compared with those of longitudinal specimens. The transverse stress rupture lives are corresponding with the longitudinal stress rupture lives at 760 ℃/758 MPa and 850 ℃/550 MPa. The transverse stress rupture lives are slightly less than the longitudinal stress rupture lives at 980 ℃/ 250 MPa. The fracture mechanism of the transverse stress rupture of the alloy at 760 ℃/758 MPa shows quasi-cleav- age mode and the fracture mechanism at 980 ℃/250 MPa shows dimple mode, while the fracture mechanism at 850 ℃/ 550 MPa shows quasi-cleavage and dimple mixture mode. At higher temperature and lower stress, the microeracks are easier to initiate and interconnect in the transverse specimen than those in longitudinal specimen because there are interdendritic regions perpendicular to the axis of stress.展开更多
The specimens of the second generation single crystal superalloy DD6 with different Hf contents were prepared in the directionally solidified furnace with a high temperature gradient. The long term aging of the specim...The specimens of the second generation single crystal superalloy DD6 with different Hf contents were prepared in the directionally solidified furnace with a high temperature gradient. The long term aging of the specimens after full heat treatment was performed at 1040℃for 800 h. The effect of Hf on the microstructure and stress rupture properties under 980℃/250 MPa of the alloy after long term aging was investigated. The results show that the γ' coarsening and rafting and no topologically close packed phase (TCP) are observed in the microstructures of DD6 alloy with different Hf contents after aged at 1 040℃ for 800 h. It indicates that DD6 alloy with different Hf contents all possesses good microstructure stability. With increasing Hf content the rupture life after long term aging turns shorter and the elongation represents the increasing first and decreasing afterwards. The fracture mechanism of the alloy with different Hf contents at 980℃/250 MPa all shows dimple model. The influence of the microstructures on the stress rupture properties of the alloy is also discussed.展开更多
Tensile properties of the second generation single crystal superalloy DD6 were investigated from 20 ℃ to 1 100 ℃. Microstructure evolution and fracture mechanism were examined by scanning electron microscopy (SEM)...Tensile properties of the second generation single crystal superalloy DD6 were investigated from 20 ℃ to 1 100 ℃. Microstructure evolution and fracture mechanism were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the tensile strength decreases slightly with increasing temperature from 20 ℃ to 400 ℃. The tensile strength of the alloy increases with the increase of temperature from 400 ℃ to 800 ℃. Above 800 ℃, the yield strength of the alloy decreases greatly with increasing temperature. The elongation and contraction of area almost present opposite tendency in contrast to changes of the tensile strength. At lower and intermediate temperature (from 20 ℃ to 850 ℃), the tensile fracture mechanism shows quasi-cleavage mode, while at high temperature (980 ℃ and 1 100 ℃), it is dimple mode. The γ' precipitate morphology still maintains cubic after tensile fracture at lower and intermediate temperature. The γ' phase changes into rectangular solid at high temperature. The γ' phase is sheared by anti-phase boundary (APB) or stacking faults at lower and intermediate temperature. At high temperature, dislocations overcome γ' through by-passing mechanism.展开更多
文摘The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to determine the initiation site and the failure mechanism. Evolution of the microstructure was investigated by TEM observation. The results show that fatigue limit of DD6 alloy with 0.34%Hf is a little smaller than that of the alloy with 0.10%Hf. The fatigue cracks initiated on the surface or near the surface of the specimens. The crack would propagate along { 111 } octahedral slip planes, rather than perpendicular to the loading axis of specimen. Typical fatigue striation formed in steady propagation of fatigue crack. The fracture mechanisms of the high cycle fatigue of DD6 alloys with 0.10%Hf and 0.34%Hf are quasi-cleavage fracture. Different types of dislocation structures were developed during high cycle fatigue deformation.
文摘The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.
文摘Transient Liquid Phase Diffusion bonding (TLP bonding) is an effective method to achieve excellent joint of DD6, which is a new generation single crystal superalloy to manufacture aero-engine turbine blades. In this paper, the interlayer alloys for DD6 TLP bonding were designed. The alloy foils with thickness 40 μm ~ 60 μm, width 4 mm were prepared by using a single roller rapid solidification apparatus and the TLP bonding of DD6 was conducted. Then the joint microstructure and alloying elements diffusion behaviors were analyzed. The results indicate that microstructures of interlayer alloys prepared are fine and homogeneous, the melting point range of alloys from 1070°C to 1074°C and their melting temperature interval is merely 20°C, when the chemical composition of alloys are 1.5 ~ 2.0Cr, 3.2 ~ 4.0W, 3.7 ~ 4.5Co, 2.2 ~ 3.0Al, 0.7 ~ 1.0Mo, 3.2B, remain Ni (wt%). When the welding parameters are bonding temperature 1200?C, holding time 8.0 hour and welding pressure 0.3 MPa, the compacted joints obtained and the microstructure of TLP bonding seams were similar to base metal. The bonding joint is composed of weld center zone, isothermal solidification zone and diffusion-affected zone. Within joint, the elements diffusion is sufficient and borides in the diffusion zone are fewer.
文摘The samples of single crystal superalloy DD6 are grit blasted and then heat treated either with the standard heat treatment procedure or in the temperature range of 1 000-1 250 ℃ for 4-16 h at vacuum atmosphere, then the recrystallization behavior of DD6 alloy is investigated. The results show that the equiaxed recrystallization grains form in the 7 phase region where the as-cast γ' phases have been dissolved completely, and cellular recrystallization forms in the region where the ascast γ' phases have been dissolved partially. The cellular recrystallization area consists of cellular grains, and the cellular grain consists of cubic γ' phase, lamellar γ' phase and γ+γ'. The coexistence of the equiaxed recrystallization zones and cellular recrystallization zones is a re- crystallized characteristic of the cold worked single crystal samples which are heat treated at a temperature lower than the solu- tion temperature. When the heating temperature is higher than 1 150 ℃, with the increase of heat treating temperature, the equiaxed recrystallization zone expands, whereas the cellular recrystallization zone shrinks. All the deformed regions are consumed by equiaxed recrystallization after annealing at solution temperature.
文摘DD6 single crystal superalloy slabs were prepared with seed method in the direetionally solidified furnace with high temperature gradient. The transverse stress rupture properties and fracture hehaviour of the alloy at 760 ℃/758 MPa, 850 ℃/550 MPa and 980 ℃/250 MPa were investigated and compared with those of longitudinal specimens. The transverse stress rupture lives are corresponding with the longitudinal stress rupture lives at 760 ℃/758 MPa and 850 ℃/550 MPa. The transverse stress rupture lives are slightly less than the longitudinal stress rupture lives at 980 ℃/ 250 MPa. The fracture mechanism of the transverse stress rupture of the alloy at 760 ℃/758 MPa shows quasi-cleav- age mode and the fracture mechanism at 980 ℃/250 MPa shows dimple mode, while the fracture mechanism at 850 ℃/ 550 MPa shows quasi-cleavage and dimple mixture mode. At higher temperature and lower stress, the microeracks are easier to initiate and interconnect in the transverse specimen than those in longitudinal specimen because there are interdendritic regions perpendicular to the axis of stress.
文摘The specimens of the second generation single crystal superalloy DD6 with different Hf contents were prepared in the directionally solidified furnace with a high temperature gradient. The long term aging of the specimens after full heat treatment was performed at 1040℃for 800 h. The effect of Hf on the microstructure and stress rupture properties under 980℃/250 MPa of the alloy after long term aging was investigated. The results show that the γ' coarsening and rafting and no topologically close packed phase (TCP) are observed in the microstructures of DD6 alloy with different Hf contents after aged at 1 040℃ for 800 h. It indicates that DD6 alloy with different Hf contents all possesses good microstructure stability. With increasing Hf content the rupture life after long term aging turns shorter and the elongation represents the increasing first and decreasing afterwards. The fracture mechanism of the alloy with different Hf contents at 980℃/250 MPa all shows dimple model. The influence of the microstructures on the stress rupture properties of the alloy is also discussed.
基金Sponsored by State Key Laboratories Development Program of China(9140C430101120C4301)
文摘Tensile properties of the second generation single crystal superalloy DD6 were investigated from 20 ℃ to 1 100 ℃. Microstructure evolution and fracture mechanism were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the tensile strength decreases slightly with increasing temperature from 20 ℃ to 400 ℃. The tensile strength of the alloy increases with the increase of temperature from 400 ℃ to 800 ℃. Above 800 ℃, the yield strength of the alloy decreases greatly with increasing temperature. The elongation and contraction of area almost present opposite tendency in contrast to changes of the tensile strength. At lower and intermediate temperature (from 20 ℃ to 850 ℃), the tensile fracture mechanism shows quasi-cleavage mode, while at high temperature (980 ℃ and 1 100 ℃), it is dimple mode. The γ' precipitate morphology still maintains cubic after tensile fracture at lower and intermediate temperature. The γ' phase changes into rectangular solid at high temperature. The γ' phase is sheared by anti-phase boundary (APB) or stacking faults at lower and intermediate temperature. At high temperature, dislocations overcome γ' through by-passing mechanism.