During efficiency evaluating by DEA, the inputs and outputs of DMUs may be intervals because of insufficient information or measure error. For this reason, interval DEA is proposed. To make the efficiency scores more ...During efficiency evaluating by DEA, the inputs and outputs of DMUs may be intervals because of insufficient information or measure error. For this reason, interval DEA is proposed. To make the efficiency scores more discriminative, this paper builds an Interval Modified DEA (IMDEA) model based on MDEA. Furthermore, models of obtaining upper and lower bounds of the efficiency scores for each DMU are set up. Based on this, the DMUs are classified into three types. Next, a new order relation between intervals which can express the DM’s preference to the three types is proposed. As a result, a full and more convictive ranking is made on all the DMUs. Finally an example is given.展开更多
In data envelopment analysis (DEA), input and output values are subject to change for several reasons. Such variations differ in their input/output items and their decision-making units (DMUs). Hence, DEA efficiency s...In data envelopment analysis (DEA), input and output values are subject to change for several reasons. Such variations differ in their input/output items and their decision-making units (DMUs). Hence, DEA efficiency scores need to be examined by considering these factors. In this paper, we propose new resampling models based on these variations for gauging the confidence intervals of DEA scores. The first model utilizes past-present data for estimating data variations imposing chronological order weights which are supplied by Lucas series (a variant of Fibonacci series). The second model deals with future prospects. This model aims at forecasting the future efficiency score and its confidence interval for each DMU. We applied our models to a dataset composed of Japanese municipal hospitals.展开更多
In this paper, we use DEA to measure the NBA basketball teams’ efficiency in seasons 2006-2007, 2007-2008, 2008-2009 and 2009-2010. In this context, each team is a DMU;we select the payroll and the average attendance...In this paper, we use DEA to measure the NBA basketball teams’ efficiency in seasons 2006-2007, 2007-2008, 2008-2009 and 2009-2010. In this context, each team is a DMU;we select the payroll and the average attendance to be the inputs while the wins and the average points per game to be the outputs. First, in order to obtain benchmarks, we measure the DMUs efficiency through classic DEA BCC model with an assurance region for each one of the four seasons individually and together. When we consider the four seasons together, we may analyse whether the performance of each team increases or decreases over time. Next, we evaluate the teams cross efficiency by DEA game to consider that there is no cooperation among DMUs. This approach also improves the efficiencies discrimination.展开更多
Purpose: This paper aims to compare and rank the allocative efficiency of information resources in rural areas by taking 13 rural areas in Jiangsu Province, China as the research sample.Design/methodology/approach: We...Purpose: This paper aims to compare and rank the allocative efficiency of information resources in rural areas by taking 13 rural areas in Jiangsu Province, China as the research sample.Design/methodology/approach: We designed input and output indicators for allocation of rural information resources and conducted the quantitative evaluation of allocative efficiency of rural information resources based on cross-efficiency model in combination with the classical CCR model in data envelopment analysis(DEA).Findings: Cross-efficiency DEA model can be used for our research with the objective to evaluate quantitatively and objectively whether the allocation of information resources in various rural areas is reasonable and whether the output is commensurate with the input.Research limitations: We have to give up using some indicators because of limited data availability. There is a need to further improve the cross-efficiency DEA model because it cannot identify the specific factors influencing the efficiency of decision-making units(DMUs).Practical implications: The evaluation results will help us understand the present allocative efficiency levels of information resources in various rural areas so as to provide a decisionmaking basis for formulation of the policies aimed at promoting the circulation of information resources in rural areas.Originality/value: Little or no research has been published about the allocative efficiency of rural information resources. The value of this research lies in its focus on studying rural informatization from the perspective of allocative efficiency of rural information resources and in the application of cross-efficiency DEA model to evaluate allocative efficiency of rural information resources as well.展开更多
The cross-efficiency evaluation method is reviewed which is developed as a data envelopment analysis (DEA) extensive tool. The cross-efficiency evaluation method is utilized to identify the decision making unit (DM...The cross-efficiency evaluation method is reviewed which is developed as a data envelopment analysis (DEA) extensive tool. The cross-efficiency evaluation method is utilized to identify the decision making unit (DMU) with the best practice and to rank the DMUs by their respective cross-efficiency scores. The main drawbacks of the cross-efficiency evaluation method when the ultimate average cross-efficiency scores are used to evalu- ate and rank the DMUs are also pointed out. With the research gap, an improved technique for order preference by similarity to ideal solution (TOPSIS) is introduced to rank the crossfficiency by eliminating the average assumption. Finally, an empirical example is illustrated to examine the validity of the proposed method.展开更多
Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision making units (DMUs) on the basis of multiple inputs and outputs. The context-dependent DEA is introduced to...Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision making units (DMUs) on the basis of multiple inputs and outputs. The context-dependent DEA is introduced to measure the relative attractiveness of a particular DMU when compared to others. In real-world situation, because of incomplete or non-obtainable information, the data (Input and Output) are often not so deterministic, therefore they usually are imprecise data such as interval data, hence the DEA models becomes a nonlinear programming problem and is called imprecise DEA (IDEA). In this paper the context-dependent DEA models for DMUs with interval data is extended. First, we consider each DMU (which has interval data) as two DMUs (which have exact data) and then, by solving some DEA models, we can find intervals for attractiveness degree of those DMUs. Finally, some numerical experiment is used to illustrate the proposed approach at the end of paper.展开更多
The traditional data envelopment analysis (DEA) model can evaluate the relative efficiencies of a set of decision making units (DMUs) with exact values of inputs and outputs, but it cannot handle imprecise data. I...The traditional data envelopment analysis (DEA) model can evaluate the relative efficiencies of a set of decision making units (DMUs) with exact values of inputs and outputs, but it cannot handle imprecise data. Imprecise data, for example, can be expressed in the form of the interval data or mixtures of interval data and ordinal data. In this study, a cross-efficiency method is introduced into the DEA model to calculate the interval of cross-efficiency values, based on which a new TOPSIS method is proposed to rank the DMUs. Two examples are presented to illustrate and validate the proposed method.展开更多
文摘During efficiency evaluating by DEA, the inputs and outputs of DMUs may be intervals because of insufficient information or measure error. For this reason, interval DEA is proposed. To make the efficiency scores more discriminative, this paper builds an Interval Modified DEA (IMDEA) model based on MDEA. Furthermore, models of obtaining upper and lower bounds of the efficiency scores for each DMU are set up. Based on this, the DMUs are classified into three types. Next, a new order relation between intervals which can express the DM’s preference to the three types is proposed. As a result, a full and more convictive ranking is made on all the DMUs. Finally an example is given.
文摘In data envelopment analysis (DEA), input and output values are subject to change for several reasons. Such variations differ in their input/output items and their decision-making units (DMUs). Hence, DEA efficiency scores need to be examined by considering these factors. In this paper, we propose new resampling models based on these variations for gauging the confidence intervals of DEA scores. The first model utilizes past-present data for estimating data variations imposing chronological order weights which are supplied by Lucas series (a variant of Fibonacci series). The second model deals with future prospects. This model aims at forecasting the future efficiency score and its confidence interval for each DMU. We applied our models to a dataset composed of Japanese municipal hospitals.
文摘In this paper, we use DEA to measure the NBA basketball teams’ efficiency in seasons 2006-2007, 2007-2008, 2008-2009 and 2009-2010. In this context, each team is a DMU;we select the payroll and the average attendance to be the inputs while the wins and the average points per game to be the outputs. First, in order to obtain benchmarks, we measure the DMUs efficiency through classic DEA BCC model with an assurance region for each one of the four seasons individually and together. When we consider the four seasons together, we may analyse whether the performance of each team increases or decreases over time. Next, we evaluate the teams cross efficiency by DEA game to consider that there is no cooperation among DMUs. This approach also improves the efficiencies discrimination.
基金jointly supported by National Soft Science Research Program(Grant No.:2011GXQ4D048)the Fundamental Research Foundation for the Central Universities(Grant No.:KYZ201133)the Foundation for Humanities and Social Sciences of Jiangsu Province(Grant No.:11TQB005)
文摘Purpose: This paper aims to compare and rank the allocative efficiency of information resources in rural areas by taking 13 rural areas in Jiangsu Province, China as the research sample.Design/methodology/approach: We designed input and output indicators for allocation of rural information resources and conducted the quantitative evaluation of allocative efficiency of rural information resources based on cross-efficiency model in combination with the classical CCR model in data envelopment analysis(DEA).Findings: Cross-efficiency DEA model can be used for our research with the objective to evaluate quantitatively and objectively whether the allocation of information resources in various rural areas is reasonable and whether the output is commensurate with the input.Research limitations: We have to give up using some indicators because of limited data availability. There is a need to further improve the cross-efficiency DEA model because it cannot identify the specific factors influencing the efficiency of decision-making units(DMUs).Practical implications: The evaluation results will help us understand the present allocative efficiency levels of information resources in various rural areas so as to provide a decisionmaking basis for formulation of the policies aimed at promoting the circulation of information resources in rural areas.Originality/value: Little or no research has been published about the allocative efficiency of rural information resources. The value of this research lies in its focus on studying rural informatization from the perspective of allocative efficiency of rural information resources and in the application of cross-efficiency DEA model to evaluate allocative efficiency of rural information resources as well.
基金supported by the National Natural Science Foundation of China for Innovative Research Groups(70821001),the National Natural Science Foundation of China(70901069)the Special Fund for the Gainers of Excellent Ph.D.'s Dissertations and Dean's Scholarships of Chinese Academy of Sciences,the Research Fund for the Doctoral Program of Higher Education of China for New Teachers(20093402120013)+1 种基金the Research Fund for the Excellent Youth Scholars of Higher School of Anhui Province of China(2010SQRW001ZD)the Social Science Research Fund for Higher School of Anhui Province of China
文摘The cross-efficiency evaluation method is reviewed which is developed as a data envelopment analysis (DEA) extensive tool. The cross-efficiency evaluation method is utilized to identify the decision making unit (DMU) with the best practice and to rank the DMUs by their respective cross-efficiency scores. The main drawbacks of the cross-efficiency evaluation method when the ultimate average cross-efficiency scores are used to evalu- ate and rank the DMUs are also pointed out. With the research gap, an improved technique for order preference by similarity to ideal solution (TOPSIS) is introduced to rank the crossfficiency by eliminating the average assumption. Finally, an empirical example is illustrated to examine the validity of the proposed method.
文摘Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision making units (DMUs) on the basis of multiple inputs and outputs. The context-dependent DEA is introduced to measure the relative attractiveness of a particular DMU when compared to others. In real-world situation, because of incomplete or non-obtainable information, the data (Input and Output) are often not so deterministic, therefore they usually are imprecise data such as interval data, hence the DEA models becomes a nonlinear programming problem and is called imprecise DEA (IDEA). In this paper the context-dependent DEA models for DMUs with interval data is extended. First, we consider each DMU (which has interval data) as two DMUs (which have exact data) and then, by solving some DEA models, we can find intervals for attractiveness degree of those DMUs. Finally, some numerical experiment is used to illustrate the proposed approach at the end of paper.
基金supported by National Natural Science Funds of China for Innovative Research Groups(No.70821001)National Natural Science Funds of China(No.71222106,70901069 and 71171001)ScholarshipAward for Excellent Doctoral Student granted by Ministry of Education
文摘The traditional data envelopment analysis (DEA) model can evaluate the relative efficiencies of a set of decision making units (DMUs) with exact values of inputs and outputs, but it cannot handle imprecise data. Imprecise data, for example, can be expressed in the form of the interval data or mixtures of interval data and ordinal data. In this study, a cross-efficiency method is introduced into the DEA model to calculate the interval of cross-efficiency values, based on which a new TOPSIS method is proposed to rank the DMUs. Two examples are presented to illustrate and validate the proposed method.