The low and slowly increasing soybean yield restricts the development of soybean production. Accurate measures of total factor productivity (TFP) for soybean production can be helpful in identifying conditions, instit...The low and slowly increasing soybean yield restricts the development of soybean production. Accurate measures of total factor productivity (TFP) for soybean production can be helpful in identifying conditions, institutions or policies that promote soybean production development in China. In this paper, TFP growth for soybean production was estimated for a panel data of 10 major soybean producing provinces from 2005 to 2017. Results reveal that TFP grew at an average rate of 1.3% over the whole period, with technical progress contributing 2.3% and efficiency change providing the other -1.0%. The change of TFP for soybean production over that time, whether increase or decline, was mainly derived by technical change except in three years (2005-2007). Positive TFP growth in the provinces of Liaoning and Inner Mongolia, and negative TFP growth in Hebei and Anhui were mainly driven by efficiency change, specifically scale efficiency change except pure technical efficiency in Liaoning.展开更多
In order to improve the production efficiency of maize in Henan, China, the HP (High-Pass) filter method is used to obtain the maize trend yield. Secondly, the Malmquist index method is used to analyze the changes of ...In order to improve the production efficiency of maize in Henan, China, the HP (High-Pass) filter method is used to obtain the maize trend yield. Secondly, the Malmquist index method is used to analyze the changes of TFP (Total Factor Productivity) of maize in 18 cities in Henan Province in the past 11 years. Finally, the amount of slack in maize input and output is analyzed. The results show that the research and development level of advanced technology of maize production in Henan Province has been improved to some extent in recent years;the advanced technology in various regions has not been fully promoted and utilized;there is a certain degree of relaxation in the input of various elements of maize;the resource allocation is unreasonable, and there is a certain amount of space for saving.展开更多
文摘The low and slowly increasing soybean yield restricts the development of soybean production. Accurate measures of total factor productivity (TFP) for soybean production can be helpful in identifying conditions, institutions or policies that promote soybean production development in China. In this paper, TFP growth for soybean production was estimated for a panel data of 10 major soybean producing provinces from 2005 to 2017. Results reveal that TFP grew at an average rate of 1.3% over the whole period, with technical progress contributing 2.3% and efficiency change providing the other -1.0%. The change of TFP for soybean production over that time, whether increase or decline, was mainly derived by technical change except in three years (2005-2007). Positive TFP growth in the provinces of Liaoning and Inner Mongolia, and negative TFP growth in Hebei and Anhui were mainly driven by efficiency change, specifically scale efficiency change except pure technical efficiency in Liaoning.
文摘In order to improve the production efficiency of maize in Henan, China, the HP (High-Pass) filter method is used to obtain the maize trend yield. Secondly, the Malmquist index method is used to analyze the changes of TFP (Total Factor Productivity) of maize in 18 cities in Henan Province in the past 11 years. Finally, the amount of slack in maize input and output is analyzed. The results show that the research and development level of advanced technology of maize production in Henan Province has been improved to some extent in recent years;the advanced technology in various regions has not been fully promoted and utilized;there is a certain degree of relaxation in the input of various elements of maize;the resource allocation is unreasonable, and there is a certain amount of space for saving.