Grapevine growing areas are increasingly affected by drought,which has greatly limited global wine production and quality.DEAD-box is one of the largest subfamilies of the RNA helicase family,and its members play key ...Grapevine growing areas are increasingly affected by drought,which has greatly limited global wine production and quality.DEAD-box is one of the largest subfamilies of the RNA helicase family,and its members play key roles in the growth and development of plants and their stress responses.Previous studies have shown the potential of DEAD-box genes in the drought stress responses of Arabidopsis and tomato,rice,and other crop species.However,information about DEAD-box genes in grapevine remains limited.In this report,a total of 40 DEAD-box genes were identified in grapevine and their protein sequence characteristics and gene structures were analyzed.By comparing the expression profiles of VviDEADRHs in response to drought stress in different grapevine varieties,nine candidate genes(VviDEADRH10c,-13,-22,-25a,-25b,-33,-34,-36,and-39)were screened based on expression profiling data.Combined with qRTPCR results,Vvi DEADRH25a was selected for functional verification.Heterologous overexpression of Vvi DEADRH25a in Arabidopsis showed the transgenic plants were more sensitive to drought stress than the control.Both electrolyte permeability and malondialdehyde content were significantly increased in transgenic plants,whereas the chlorophyll content and superoxide dismutase(SOD),peroxidase(POD),catalase(CAT),and ascorbate peroxidase(APX)enzyme activities were significantly decreased.Furthermore,VviDEADRH25a-overexpressing plants showed down-regulated expression levels of several drought stress-related marker genes,namely At COR15a,At RD29A,At ERD15,and At P5CS1,which indicated that they participated in the drought stress response.In summary,this study provides new insights into the structure,evolution,and participation of DEAD-box RNA helicase genes in the response to drought stress in grapevines.展开更多
The current therapeutic regimen to combat chronic hepatitis C is not optimal due to substantial side effects and the failure of a significant proportion of patients to achieve a sustained virological response. Recentl...The current therapeutic regimen to combat chronic hepatitis C is not optimal due to substantial side effects and the failure of a significant proportion of patients to achieve a sustained virological response. Recently developed direct-acting antivirals targeting hepatitis C virus (HCV) enzymes reportedly increase the virologic response to therapy but may lead to a selection of drug-resistant variants. Besides direct-acting antivirals, another promising class of HCV drugs in development include host targeting agents that are responsible for interfering with the host factors crucial for the viral life cycle. A family of host proteins known as DEAD-box RNA helicases, characterized by nine conserved motifs, is known to play an important role in RNA metabolism. Several members of this family such as DDX3, DDX5 and DDX6 have been shown to play a role in HCV replication and this review will summarize our current knowledge on their interaction with HCV. As chronic hepatitis C is one of the leading causes of hepatocellular carcinoma, the involvement of DEAD-box RNA helicases in the development of HCC will also be highlighted. Continuing research on the interaction of host DEAD-box proteins with HCV and the contribution to viral replication and pathogenesis could be the panacea for the development of novel therapeutics against HCV.展开更多
Hematopoiesis represents a meticulously regulated and dynamic biological process.Genetic aberrations affecting blood cells,induced by various factors,frequently give rise to hematological tumors.These instances are of...Hematopoiesis represents a meticulously regulated and dynamic biological process.Genetic aberrations affecting blood cells,induced by various factors,frequently give rise to hematological tumors.These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events,including RNA alternative splicing,RNA localization,RNA degradation,and storage.Notably,post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis.The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors,intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing,RNA modification,and ribosome assembly.This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEADBox RNA helicases in malignant hematopoiesis.Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.展开更多
Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,an...Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,and the effects of those interactions on FMDV replication,remain incompletely elucidated.In the present study,using the yeast two-hybrid system,we identified a porcine cell protein,DEAD-box RNA helicase 1(DDX1),which interacted with FMDV 3D.The DDX1-3D interaction was further confirmed by co-immunoprecipitation experiments and an indirect immunofluorescence assay(IFA)in porcine kidney 15(PK-15)cells.DDX1 was reported to either inhibit or facilitate viral replication and regulate host innate immune responses.However,the roles of DDX1 during FMDV infection remain unclear.Our results revealed that DDX1 inhibited FMDV replication in an ATPase/helicase activity-dependent manner.In addition,DDX1 stimulated IFN-p activation in FMDV-infected cells.Together,our results expand the body of knowledge regarding the role of DDX1 in FMDV infection.展开更多
In the era of advancement,the entire world continues to remain baffled by the increased rate of progression of cancer.There has been an unending search for novel thera-peutic targets and prognostic markers to curb the...In the era of advancement,the entire world continues to remain baffled by the increased rate of progression of cancer.There has been an unending search for novel thera-peutic targets and prognostic markers to curb the oncogenic scenario.The DEAD-box RNA he-licases are a large family of proteins characterized by their evolutionary conserved D-E-A-D(Asp-Glu-Ala-Asp)domain and merit consideration in the oncogenic platform.They perform multidimensional functions in RNA metabolism and also in the pathology of cancers.Their bio-logical role ranges from ribosome biogenesis,RNA unwinding,splicing,modification of second-ary and tertiary RNA structures to acting as transcriptional coactivators/repressors of various important oncogenic genes.They also play a crucial role in accelerating oncogenesis by pro-moting cell proliferation and metastasis.DDX5(p68)is one of the archetypal members of this family of proteins and has gained a lot of attention due to its oncogenic attribute.It is found to be overexpressed in major cancer types such as colon,brain,breast,and prostate cancer.It exhibits its multifaceted nature by not only coactivating genes implicated in cancers but also mediating crosstalk across major signaling pathways in cancer.Therefore,in this review,we aim to illustrate a comprehensive overview of DEAD-box RNA helicases especially p68 by focusing on their multifaceted roles in different cancers and the various signaling pathways affected by them.Further,we have also briefly discoursed the therapeutic interventional approaches with the DEAD-box RNA helicases as the pharmacological targets for designing in-hibitors to pave way for cancer therapy.展开更多
RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA–protein complexes in an adenosine triphosphatedependent manner.Due to the large RNA helicase families in plants,the precise...RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA–protein complexes in an adenosine triphosphatedependent manner.Due to the large RNA helicase families in plants,the precise roles of many RNA helicases in plant physiology and development remain to be clarified.Here,we show that mutations in maize(Zea mays)DEAD-box RNA helicase48(Zm RH48)impair the splicing of mitochondrial introns,mitochondrial complex biosynthesis,and seed development.Loss of Zm RH48 function severely arrested embryogenesis and endosperm development,leading to defective kernel formation.Zm RH48 is targeted to mitochondria,where its deficiency dramatically reduced the splicing efficiency of five cis-introns(nad5 intron 1;nad7 introns 1,2,and 3;and ccm Fc intron 1)and one trans-intron(nad2 intron 2),leading to lower levels of mitochondrial complexes I andⅢ.Zm RH48 interacts with two unique pentatricopeptide repeat(PPR)proteins,PPR-SMR1 and SPR2,which are required for the splicing of over half of all mitochondrial introns.PPR-SMR1 interacts with SPR2,and both proteins interact with P-type PPR proteins and Zm-m CSF1 to facilitate intron splicing.These results suggest that Zm RH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.展开更多
Objective:Hepatocellular carcinoma(HCC),the main type of liver cancer,has a high morbidity and mortality,and a poor prognosis.RNA helicase DDX5,which acts as a transcriptional co-regulator,is overexpressed in most mal...Objective:Hepatocellular carcinoma(HCC),the main type of liver cancer,has a high morbidity and mortality,and a poor prognosis.RNA helicase DDX5,which acts as a transcriptional co-regulator,is overexpressed in most malignant tumors and promotes cancer cell growth.Heat shock protein 90(HSP90)is an important molecular chaperone in the conformational maturation and stabilization of numerous proteins involved in cell growth or survival.Methods:DDX5 m RNA and protein expression in surgically resected HCC tissues from 24 Asian patients were detected by quantitative real-time PCR and Western blot,respectively.The interaction of DDX5-HSP90 was determined by molecular docking,immunoprecipitation,and laser scanning confocal microscopy.The autophagy signal was detected by Western blot.The cell functions and signaling pathways of DDX5 were determined in 2 HCC cell lines.Two different murine HCC xenograft models were used to determine the function of DDX5 and the therapeutic effect of an HSP90 inhibitor.Results:HSP90 interacted directly with DDX5 and inhibited DDX5 protein degradation in the AMPK/ULK1-regulated autophagy pathway.The subsequent accumulation of DDX5 protein induced the malignant phenotype of HCC by activating theβ-catenin signaling pathway.The silencing of DDX5 or treatment with HSP90 inhibitor both blocked in vivo tumor growth in a murine HCC xenograft model.High levels of HSP90 and DDX5 protein were associated with poor prognoses.Conclusions:HSP90 interacted with DDX5 protein and subsequently protected DDX5 protein from AMPK/ULK1-regulated autophagic degradation.DDX5 and HSP90 are therefore potential therapeutic targets for HCC.展开更多
P68 RNA helicase is a prototypical DEAD box RNA helicase. The protein plays a very important role in early organ development and maturation. Consistent with the function of the protein in transcriptional regulation an...P68 RNA helicase is a prototypical DEAD box RNA helicase. The protein plays a very important role in early organ development and maturation. Consistent with the function of the protein in transcriptional regulation and pre-mRNA splicing, p68 was found to predominately localize in the cell nucleus. However, recent experiments demon- strate a transient cytoplasmic localization of the protein. We report here that p68 shuttles between the nucleus and the cytoplasm. The nucleocytoplasmic shuttling of p68 is mediated by two nuclear localization signal and two nuclear exporting signal sequence elements. Our experiments reveal that p68 shuttles via a classical RanGTPase-dependent pathway.展开更多
OBJECTIVE To evaluate if RNA helicase DDX20,highly expressed in triple negative breast cancer(TNBC)cells,could serve as a surrogate marker for simvastatin treatment response.METHODS We first assessed correlation betwe...OBJECTIVE To evaluate if RNA helicase DDX20,highly expressed in triple negative breast cancer(TNBC)cells,could serve as a surrogate marker for simvastatin treatment response.METHODS We first assessed correlation between 17 mevalonate pathway-related genes and expression of DDX20 in a cohort of 1325 breast cancer tumors.TNBC cells,MDA-MB-231,were then treated with simvastatin and mevalonate pathway intermediates to assess the alteration in DDX20 expression.In the mouse model,MDA-MB-231 cells were injected to tail veins of mice,groups of 8mice each were injected intraperioneally with vehicle or simvastatin 25mg·kg-1 3times a week for 6weeks.The number of metastatic colonies formed was quantified and immunohistochemical(IHC)staining of DDX20 was carried out in the lung tissues.RESULTS Among the 17 genes evaluated,positive correlation with DDX20 expression was observed in eight of them,with HMGCR having the highest correlation.Our in vitro experiments show exposure of breast cancer cells to simvastatin lead to a Rho-dependent decrease in gene expression of DDX20,leading to decreased tumor proliferation in a mevalonate pathway-dependent manner.Conversely,ectopic overexpression of DDX20 significantly abrogated the anti-metastatic activity of simvastatin.A similar observation is seen in the mouse model,where simvastatin-injected mice show significantly fewer visible lung metastases compared to placebo-fed mice.IHC staining on these lung tissues showed decreased DDX20 expression in simvastatin-injected group,corroborating our observations in vitro.CONCLUSION DDX20 is a potential surrogate marker for simvastatin treatment response in breast cancer and a long term implication of our findings is the possibility of an effective combinatorial therapeutic intervention using statins(to suppress DDX20 gene expression)and a suitable firstline agent″for the kill″of invasive breast cancer.展开更多
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses(NS2BNS3) form an endoplasmic reticulum(ER) membrane-associated hetero-dimeric com...Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses(NS2BNS3) form an endoplasmic reticulum(ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.展开更多
基金financially supported by grants from the National Natural Science Foundation of China(32072517)the National Key Research and Development Program of China(2018YFD1000105)+2 种基金the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(21HASTIT035)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(21IRTSTHN021)the Science and Technology Planning Project of Luoyang City,China(2101102A)。
文摘Grapevine growing areas are increasingly affected by drought,which has greatly limited global wine production and quality.DEAD-box is one of the largest subfamilies of the RNA helicase family,and its members play key roles in the growth and development of plants and their stress responses.Previous studies have shown the potential of DEAD-box genes in the drought stress responses of Arabidopsis and tomato,rice,and other crop species.However,information about DEAD-box genes in grapevine remains limited.In this report,a total of 40 DEAD-box genes were identified in grapevine and their protein sequence characteristics and gene structures were analyzed.By comparing the expression profiles of VviDEADRHs in response to drought stress in different grapevine varieties,nine candidate genes(VviDEADRH10c,-13,-22,-25a,-25b,-33,-34,-36,and-39)were screened based on expression profiling data.Combined with qRTPCR results,Vvi DEADRH25a was selected for functional verification.Heterologous overexpression of Vvi DEADRH25a in Arabidopsis showed the transgenic plants were more sensitive to drought stress than the control.Both electrolyte permeability and malondialdehyde content were significantly increased in transgenic plants,whereas the chlorophyll content and superoxide dismutase(SOD),peroxidase(POD),catalase(CAT),and ascorbate peroxidase(APX)enzyme activities were significantly decreased.Furthermore,VviDEADRH25a-overexpressing plants showed down-regulated expression levels of several drought stress-related marker genes,namely At COR15a,At RD29A,At ERD15,and At P5CS1,which indicated that they participated in the drought stress response.In summary,this study provides new insights into the structure,evolution,and participation of DEAD-box RNA helicase genes in the response to drought stress in grapevines.
基金Supported by Grants from the Ministry of Education of Singapore,Academic Research Fund Tier 1 Grant R-182-000-170-112
文摘The current therapeutic regimen to combat chronic hepatitis C is not optimal due to substantial side effects and the failure of a significant proportion of patients to achieve a sustained virological response. Recently developed direct-acting antivirals targeting hepatitis C virus (HCV) enzymes reportedly increase the virologic response to therapy but may lead to a selection of drug-resistant variants. Besides direct-acting antivirals, another promising class of HCV drugs in development include host targeting agents that are responsible for interfering with the host factors crucial for the viral life cycle. A family of host proteins known as DEAD-box RNA helicases, characterized by nine conserved motifs, is known to play an important role in RNA metabolism. Several members of this family such as DDX3, DDX5 and DDX6 have been shown to play a role in HCV replication and this review will summarize our current knowledge on their interaction with HCV. As chronic hepatitis C is one of the leading causes of hepatocellular carcinoma, the involvement of DEAD-box RNA helicases in the development of HCC will also be highlighted. Continuing research on the interaction of host DEAD-box proteins with HCV and the contribution to viral replication and pathogenesis could be the panacea for the development of novel therapeutics against HCV.
基金Chongqing Science Fund for Distinguished Young Scholars(No.CSTB2022NSCQJQX0032)Chongqing University Innovation Research Group Project(No.CXQT21011)+2 种基金Chongqing Medical University Youth Innovation in Future Medicine(No.W0156)the National Natural Science Foundation of China(No.82200123)Natural Science Foundation of Chongqing,China,(No.CSTB2023NSCQ-MSX0280).
文摘Hematopoiesis represents a meticulously regulated and dynamic biological process.Genetic aberrations affecting blood cells,induced by various factors,frequently give rise to hematological tumors.These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events,including RNA alternative splicing,RNA localization,RNA degradation,and storage.Notably,post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis.The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors,intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing,RNA modification,and ribosome assembly.This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEADBox RNA helicases in malignant hematopoiesis.Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.
基金supported by grants from the National Natural Science Foundation of China (Nos. 31302106, 31260616, and 31602035)the National Key Research and Development Program of China (Nos. 2016YFD0500901 and 2017YFD0500903)
文摘Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,and the effects of those interactions on FMDV replication,remain incompletely elucidated.In the present study,using the yeast two-hybrid system,we identified a porcine cell protein,DEAD-box RNA helicase 1(DDX1),which interacted with FMDV 3D.The DDX1-3D interaction was further confirmed by co-immunoprecipitation experiments and an indirect immunofluorescence assay(IFA)in porcine kidney 15(PK-15)cells.DDX1 was reported to either inhibit or facilitate viral replication and regulate host innate immune responses.However,the roles of DDX1 during FMDV infection remain unclear.Our results revealed that DDX1 inhibited FMDV replication in an ATPase/helicase activity-dependent manner.In addition,DDX1 stimulated IFN-p activation in FMDV-infected cells.Together,our results expand the body of knowledge regarding the role of DDX1 in FMDV infection.
基金supported by the Department of Science and Technology(Nano Mission:DST/NM/NT/2018/105(G),SERB:EMR/2017/000992/HS&EMR/2017/001183),CSIR(FBR Project#31-2(274)2020-21),Govt.of India.
文摘In the era of advancement,the entire world continues to remain baffled by the increased rate of progression of cancer.There has been an unending search for novel thera-peutic targets and prognostic markers to curb the oncogenic scenario.The DEAD-box RNA he-licases are a large family of proteins characterized by their evolutionary conserved D-E-A-D(Asp-Glu-Ala-Asp)domain and merit consideration in the oncogenic platform.They perform multidimensional functions in RNA metabolism and also in the pathology of cancers.Their bio-logical role ranges from ribosome biogenesis,RNA unwinding,splicing,modification of second-ary and tertiary RNA structures to acting as transcriptional coactivators/repressors of various important oncogenic genes.They also play a crucial role in accelerating oncogenesis by pro-moting cell proliferation and metastasis.DDX5(p68)is one of the archetypal members of this family of proteins and has gained a lot of attention due to its oncogenic attribute.It is found to be overexpressed in major cancer types such as colon,brain,breast,and prostate cancer.It exhibits its multifaceted nature by not only coactivating genes implicated in cancers but also mediating crosstalk across major signaling pathways in cancer.Therefore,in this review,we aim to illustrate a comprehensive overview of DEAD-box RNA helicases especially p68 by focusing on their multifaceted roles in different cancers and the various signaling pathways affected by them.Further,we have also briefly discoursed the therapeutic interventional approaches with the DEAD-box RNA helicases as the pharmacological targets for designing in-hibitors to pave way for cancer therapy.
基金supported by the National Natural Science Foundation of China (Project Nos.32072126 and 32230075)the Shandong Provincial Natural Science Foundation (Project No.ZR2019MC005)。
文摘RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA–protein complexes in an adenosine triphosphatedependent manner.Due to the large RNA helicase families in plants,the precise roles of many RNA helicases in plant physiology and development remain to be clarified.Here,we show that mutations in maize(Zea mays)DEAD-box RNA helicase48(Zm RH48)impair the splicing of mitochondrial introns,mitochondrial complex biosynthesis,and seed development.Loss of Zm RH48 function severely arrested embryogenesis and endosperm development,leading to defective kernel formation.Zm RH48 is targeted to mitochondria,where its deficiency dramatically reduced the splicing efficiency of five cis-introns(nad5 intron 1;nad7 introns 1,2,and 3;and ccm Fc intron 1)and one trans-intron(nad2 intron 2),leading to lower levels of mitochondrial complexes I andⅢ.Zm RH48 interacts with two unique pentatricopeptide repeat(PPR)proteins,PPR-SMR1 and SPR2,which are required for the splicing of over half of all mitochondrial introns.PPR-SMR1 interacts with SPR2,and both proteins interact with P-type PPR proteins and Zm-m CSF1 to facilitate intron splicing.These results suggest that Zm RH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.
基金funding support from the National Natural Science Foundation of China(Grant Nos.81672467,81702773,81702389,and 81672368)the Major National R&D Project(Grant Nos.2018ZX10723204,2018ZX10302205,and 2018ZX09J18107)the Natural Science Foundation of Beijing(Grant No.7172207)。
文摘Objective:Hepatocellular carcinoma(HCC),the main type of liver cancer,has a high morbidity and mortality,and a poor prognosis.RNA helicase DDX5,which acts as a transcriptional co-regulator,is overexpressed in most malignant tumors and promotes cancer cell growth.Heat shock protein 90(HSP90)is an important molecular chaperone in the conformational maturation and stabilization of numerous proteins involved in cell growth or survival.Methods:DDX5 m RNA and protein expression in surgically resected HCC tissues from 24 Asian patients were detected by quantitative real-time PCR and Western blot,respectively.The interaction of DDX5-HSP90 was determined by molecular docking,immunoprecipitation,and laser scanning confocal microscopy.The autophagy signal was detected by Western blot.The cell functions and signaling pathways of DDX5 were determined in 2 HCC cell lines.Two different murine HCC xenograft models were used to determine the function of DDX5 and the therapeutic effect of an HSP90 inhibitor.Results:HSP90 interacted directly with DDX5 and inhibited DDX5 protein degradation in the AMPK/ULK1-regulated autophagy pathway.The subsequent accumulation of DDX5 protein induced the malignant phenotype of HCC by activating theβ-catenin signaling pathway.The silencing of DDX5 or treatment with HSP90 inhibitor both blocked in vivo tumor growth in a murine HCC xenograft model.High levels of HSP90 and DDX5 protein were associated with poor prognoses.Conclusions:HSP90 interacted with DDX5 protein and subsequently protected DDX5 protein from AMPK/ULK1-regulated autophagic degradation.DDX5 and HSP90 are therefore potential therapeutic targets for HCC.
文摘P68 RNA helicase is a prototypical DEAD box RNA helicase. The protein plays a very important role in early organ development and maturation. Consistent with the function of the protein in transcriptional regulation and pre-mRNA splicing, p68 was found to predominately localize in the cell nucleus. However, recent experiments demon- strate a transient cytoplasmic localization of the protein. We report here that p68 shuttles between the nucleus and the cytoplasm. The nucleocytoplasmic shuttling of p68 is mediated by two nuclear localization signal and two nuclear exporting signal sequence elements. Our experiments reveal that p68 shuttles via a classical RanGTPase-dependent pathway.
基金The project supported by grants from the Academic Research Fund Tier 1(R-184-000-228-112)the Cancer Science Institute of Singapore,Experimental Therapeutics I Program(grant R-713-001-011-271)
文摘OBJECTIVE To evaluate if RNA helicase DDX20,highly expressed in triple negative breast cancer(TNBC)cells,could serve as a surrogate marker for simvastatin treatment response.METHODS We first assessed correlation between 17 mevalonate pathway-related genes and expression of DDX20 in a cohort of 1325 breast cancer tumors.TNBC cells,MDA-MB-231,were then treated with simvastatin and mevalonate pathway intermediates to assess the alteration in DDX20 expression.In the mouse model,MDA-MB-231 cells were injected to tail veins of mice,groups of 8mice each were injected intraperioneally with vehicle or simvastatin 25mg·kg-1 3times a week for 6weeks.The number of metastatic colonies formed was quantified and immunohistochemical(IHC)staining of DDX20 was carried out in the lung tissues.RESULTS Among the 17 genes evaluated,positive correlation with DDX20 expression was observed in eight of them,with HMGCR having the highest correlation.Our in vitro experiments show exposure of breast cancer cells to simvastatin lead to a Rho-dependent decrease in gene expression of DDX20,leading to decreased tumor proliferation in a mevalonate pathway-dependent manner.Conversely,ectopic overexpression of DDX20 significantly abrogated the anti-metastatic activity of simvastatin.A similar observation is seen in the mouse model,where simvastatin-injected mice show significantly fewer visible lung metastases compared to placebo-fed mice.IHC staining on these lung tissues showed decreased DDX20 expression in simvastatin-injected group,corroborating our observations in vitro.CONCLUSION DDX20 is a potential surrogate marker for simvastatin treatment response in breast cancer and a long term implication of our findings is the possibility of an effective combinatorial therapeutic intervention using statins(to suppress DDX20 gene expression)and a suitable firstline agent″for the kill″of invasive breast cancer.
文摘Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses(NS2BNS3) form an endoplasmic reticulum(ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.