Background:Sapindus mukurossi extract(SME)is a kind of natural surface active ingredient with potential applications in cleansing products.However,the polyphenols and pigments contained in the extract may cause color ...Background:Sapindus mukurossi extract(SME)is a kind of natural surface active ingredient with potential applications in cleansing products.However,the polyphenols and pigments contained in the extract may cause color browning of the products during storage especially at elevated temperatures,affecting its high level addition in the products.Objective:To explore a decolorization process suitable for industrialization realize the high level addition of SME and explore the potential of SME in the field of controlling sebum esters.Materials and Methods:SME was prepared by adsorbing polyphenols on the D301 resin and oxidation decoloring oxidation.Investigated its sebum-control efficacy by SZ95 model and clinical study.Results:The results demonstrate that the D301 resin displays the best adsorption selectivity for polyphenols in SME,and the polyphenol adsorption ratio of D301 resin(5 wt%)can reach 83.6%;The optimal decolorization conditions are pH=7.8,temperature 73℃and decolorization time 5.7 h when H2O2 content is 6%,The prepared SME shows no obvious changes in color and retain stable during the high temperature(50°C)test period of 28 days.4μg/mL of SME decreases the lipid synthesis of SZ95 cells by 24.8%.The clinic efficacy of the shampoo containing 10%SME(by dry extract weigh)is further evaluated.No significant changes in the skin moisture content and transepidermal water loss(TEWL)are observed within four weeks after using the product,while the scalp sebum level is significantly reduced.Conclusion:In this study,we prepared a light-colored,highly stable SME,enabled its high-level addition in cleansing and care products and found its sebum-control efficacy.展开更多
[Objective] To screen out a microbial flocculant with good decolorization effect on methyl orange wastewater,and study the effect of different cultural conditions on decolorization effect of methyl orange.[Method] Abs...[Objective] To screen out a microbial flocculant with good decolorization effect on methyl orange wastewater,and study the effect of different cultural conditions on decolorization effect of methyl orange.[Method] Absorbance of methyl orange solution before and after decolorization was determined by spectrophotometer,and the decolorization rate was calculated to compare the effects of different cultural conditions on removal rate of methyl orange.[Result]An optimal actinomycete stain(F-1-2) was screened out,and the best cultural condition was as follows:with sucrose as carbon source and NaNO3 as nitrogen source,cultured in constant temperature oscillator at 150 r/min,30℃ for 72 h.Under the optimal condition,the removal rate against methyl orange could reach 68.4%.[Conclusion]Different culture conditions have great impact on decolorization effect of strain.展开更多
A crystalline sapphire (Al2O3) boule (Ф10 × 80mm^3) grown by the temperature gradient technique (TGT) is a bit colored due to carbon volatilization from the graphite heater at high temperatures and the abs...A crystalline sapphire (Al2O3) boule (Ф10 × 80mm^3) grown by the temperature gradient technique (TGT) is a bit colored due to carbon volatilization from the graphite heater at high temperatures and the absorption of transitional metal inclusions in the raw material. The sapphire becomes colorless and transparent after decolorization and decarbonization in successive annealings in air and hydrogen at high temperatures. The quality, optical transmissivity,and homogeneity of the sapphire are remarkably improved.展开更多
The strain No. 2 which was isolated from the soil through enrichment culture was used as the experimental material. It was cultured in liquid medium to research decolorizing effect to Rose Bengal and soluble color pas...The strain No. 2 which was isolated from the soil through enrichment culture was used as the experimental material. It was cultured in liquid medium to research decolorizing effect to Rose Bengal and soluble color paste under the different conditions of different media,carbon sources,nitrogen sources,initial pH values and culture temperatures. The results revealed that the optimum decolorizing conditions were using bean juice medium and PDA medium as the minimal medium,sucrose as the carbon source,and ammonium nitrate as the nitrogen source,initial pH 6.0-8.0. In addition,the strain was primarily identified as Aspergillus flavus according to its morphous and ITS sequence analysis.展开更多
To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the su...To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...展开更多
Pseudomonas otitidis WL-13, which has a high capacity to decolorize triphenylmethane dyes, was isolated from activated sludge obtained from a wastewater treatment plant of a dyeing industry. This strain exhibited a re...Pseudomonas otitidis WL-13, which has a high capacity to decolorize triphenylmethane dyes, was isolated from activated sludge obtained from a wastewater treatment plant of a dyeing industry. This strain exhibited a remarkable color-removal capability when tested against several triphenylmethane dyes under both shaking and static conditions at high concentrations of dyes. More than 95% of Malachite Green and Brilliant Green was removed within 12 h at 500 μmol/L dye concentration under shaking conditions. Crystal Violet lost about 13% of its color under the same conditions tested. The rate of decolorization increased when the M9 medium was supplemented with yeast extract. The optimum pH and temperature for color removal were 7-9 and 35-40℃, respectively. The observed changes in the visible spectra and the inspection of bacterial growth indicated the color-removal by the adsorption of dye to the cells during incubation with strains.展开更多
A strain of photosynthetic bacterium, Rhodopseudomonas palustris W1, isolated from a lab-scale anaerobic moving bed biofilm reactor (MBBR) treating textile e?uent was demonstrated to decolorize Reactive Black 5 (RB5) ...A strain of photosynthetic bacterium, Rhodopseudomonas palustris W1, isolated from a lab-scale anaerobic moving bed biofilm reactor (MBBR) treating textile e?uent was demonstrated to decolorize Reactive Black 5 (RB5) effciently under anaerobic condition. By a series of batch tests, the suitable conditions for RB5 decolorization were obtained, namely, pH < 10, light presence, glutamine or lactate as carbon source with concentration more than 500 mg/L when lactate is selected, NH4Cl as a nitrogen source wi...展开更多
The capability of decolorization for commercial dyes by Coriolus versicolor fermentation broth containing laccase with or without immobilized mycelium was evaluated. With cell free fermentation broth containing l...The capability of decolorization for commercial dyes by Coriolus versicolor fermentation broth containing laccase with or without immobilized mycelium was evaluated. With cell free fermentation broth containing laccase, high decolorization ratio was achieved for acid orange 7, but not for the other dyes concerned. The immobilized mycelium was proved to be more efficient than the cell free system. All the four dyestuffs studied were found being decolourized with certain extent by immobilized mycelium. The repeated batch decolorization was carried out with satisfactory results. The experimental data showed that the continuous decolorization of wastewater from a printing and dyeing industry was possible by using the self immobilized C. Versicolor.展开更多
The Electro-chemistry process to produce Fenton reagents has been described. The in situ oxidation of dyes, acid chrome and alizarin red(Fenton reagents) with electrogenerated hydroxyl radicals was investigated. The \...The Electro-chemistry process to produce Fenton reagents has been described. The in situ oxidation of dyes, acid chrome and alizarin red(Fenton reagents) with electrogenerated hydroxyl radicals was investigated. The \{ I-V \} cyclic voltammograms were measured. The redox peaks of the dyes were not observed in the treated dye solutions instead of a couple of O_2/H_2O_2 redox peaks. The IR results indicate that acid chrome dye was decomposed into naphthylamine and phenol aminophenol sulfonic acid. The degradation and the decolorization of the dyes were comfirmed by the visible spectrum and the chemical analysis. The COD_ cr removing rate was close to 80%.展开更多
The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation ...The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation by the two yeasts was highly associated with the yeast growth process and glucose presence in the medium. Color removal of 200 mg dye/L was increased from 76.4% to 92.7% within 60 h to 100% within 18-24 h with the increase of glucose from 5 to 10 g/L, although the activity of manganese dependent peroxidase (MnP) decreased by 2-8 times in this case. Hydrogen peroxide of 233.3 μg/L was detected in 6 h in D. polymorphus culture. The cometabolic functions of glucose and hydrogen peroxide could be also confirmed by the further color removals of 95.8% or 78,9% in the second cycle of decolorization tests in which 7 g glucose/L or 250 μg H202/L was superadded respectively together with 200 mg dye/L.展开更多
[ Object] The study aimed to discuss the decolorization on indigo dyeing wastewater by laccase from Coriolus versicolor. [ Method ] Firstly, the effects of temperature, pH, indigo concentration, HBT concentration, lac...[ Object] The study aimed to discuss the decolorization on indigo dyeing wastewater by laccase from Coriolus versicolor. [ Method ] Firstly, the effects of temperature, pH, indigo concentration, HBT concentration, laccase dosage on the decolorization of indigo dyeing wastewater by laccase/HBT, and then the synergism of laccase and acid cellulase was analyzed. [Result] Using ABTS as the substrate, the kinetic parame- ters, K,, and Vmax, were 0.318 mmol/L and 0.035 5 mmol/( L . min) respectively. The decolorization rate of indigo reached 96.5% when the lacca- se acted on indigo for 40 min with HBT as an introducer at temperature 50 ℃, pH =4.5, indigo concentration 100 mg/L, HBT concentration 0.1% and laccase dosage 100 lU/L. Due to the synergism of laccase and acid cellulase during the bio-finishing of blue jeans, the backstaining degree of blue jeans reduced by 85% when the amount of laccase added was 15 000 IU/kg. Menawhile, the synergism of the laccase and acid cellulase de- creased indigo concentration in wastewater by 83.8%. [ Conclusion ] The laccase from Coriolus versicolor had a good prospect in the bio-finishing of blue jeans and the decolorization of indigo dyeing wastewater.展开更多
Azo dyes are among the oldest man made chemicals and they are still widely used in the textile, printing and the food industries. About 10%-15% of the total dyes used in the industry is released into the environment ...Azo dyes are among the oldest man made chemicals and they are still widely used in the textile, printing and the food industries. About 10%-15% of the total dyes used in the industry is released into the environment during the manufacturing and usage. Some dyes and some of their N substituted aromatic bio transformation products are toxic and/or carcinogenic and therefore these dyes are considered to be environmental pollutants and health hazards. These azo dyes are degraded by physico chemical and biological methods. Of these, biological methods are considered to be the most economical and efficient. In this work, attempts were made to degrade these dyes aerobically. The organisms which were efficient in degrading the following azo dyes Red RB, Remazol Red, Remazol Blue, Remazol Violet, Remazol Yellow, Golden Yellow, Remazol Orange, Remazol Black were isolated from three different sources viz., wastewater treatment plant, paper mill effluent treatment plant and tannery wastewater treatment plant. The efficiency of azo dye degradation by mixed cultures from each source was analyzed. It was found that mixed cultures from tannery treatment plant worked efficiently in decolorizing Remazol Red, Remazol Orange, Remazol Blue and Remazol Violet, while mixed cultures from the paper mill effluent worked efficiently in decolorizing Red RB, Golden Yellow and Remazol Yellow. The mixed cultures from wastewater treatment plant efficiently decolorized Remazol Black.展开更多
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries....In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.展开更多
In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Asp...In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Aspergillus niger ZJUBE-1, and an azo dye, Congo red was chosen as a model dye to investigate batch decolorization efficiency by pellets. The pellets as biosorbent showed strong salt and acid tolerance in biosorption process. The results for dye adsorption showed that the biosorption process fitted well with models of pseudo-second-order kinetic and Langmuir isotherm, with a maximum adsorption capacity of 263.2 mg·g^(-1) mycelium. During 6 batches of continuous decolorization operation, the mycelial pellets could possess efficient decolorization abilities(>98.5%).The appearance of new peak in the UV–Vis spectral result indicated that the decolorization process may also contain biodegradation. The mechanism studies showed that efficient biosorption ability of pellets only relies on the active zone on the surface of the pellet, which can be enhanced by nutrition supplement or be shifted outward by a reculture process.展开更多
Experimental results of an azo dye(reactive brilliant red X 3B, RBR X 3B) decolorization and degradation in a white rot fungal biofilm reactor were introduced and discussed. The fungal biofilm reactor is highly pote...Experimental results of an azo dye(reactive brilliant red X 3B, RBR X 3B) decolorization and degradation in a white rot fungal biofilm reactor were introduced and discussed. The fungal biofilm reactor is highly potential for dye decolorization and degradation with the highest decoloring rate of 95% within 96 hours reaction time at initial pH 4.5 under high nitrogen level (HN) (24 mmol/L ammonium tartrate) condition. Experimental conditions, such as nutrient nitrogen levels in reaction mixture and initial pH, significantly affected dye decolorization and degradation. Effluents from this biofilm reactor can be well treated to meet the discharging requirements by use of chemical flocculation.RBR X 3B was first absorbed onto fungal biomass and then degraded gradually. The SH 13 fungus monopolized the biofilm throughout the experiments, though the reactor was exposed to open air for 4 months.展开更多
Because the lack of detailed study of biological decolorization in high salt dye wastewater, it is still difficult to evaluate the biological treatment on high-salinity dye wastewater. The experiments were carried out...Because the lack of detailed study of biological decolorization in high salt dye wastewater, it is still difficult to evaluate the biological treatment on high-salinity dye wastewater. The experiments were carried out to study the salt-tolerant bacteria, which is useful in the treatment of high-salinity colored wastewater. Simulated wastewater containing 5-150 g/L salt (NaCI) and 50-2000 mg/L Reactive Brilliant Red K-2BP was treated with three salt-tolerant mixed cultures (CAS, TAS, DSAS), which were under a gradually acclimated procedure. With the increase of concentrations of salt and dye, the decolorization became low. The abilities of decolorization of dyes wastewater by three mixed cultures (CAS, TAS, DSAS) were studied, CAS and DSAS mixed cultures showed more active for the treatment of high-salinity colored wastewater than TAS mixed cultures. The results suggested that there might be a simple process for the high salt wastewater treatment, which could be incorporated into conventional activated sludge plants.展开更多
Almost all the studies both domestic and international using white rot fungus for dye wastewater treatment are performed under sterile conditions. However, it is obviously unpractical that wastewater with dyes is trea...Almost all the studies both domestic and international using white rot fungus for dye wastewater treatment are performed under sterile conditions. However, it is obviously unpractical that wastewater with dyes is treated under sterile conditions. A feasible study was made for using white rot fungus Phanerochaete chrysosporium to degrade reactive brilliant red K-2BP dye under non-sterile conditions. The results showed that there was no decolorizing effect under non-sterile condition if white rot fungus was incubated under non-sterile condition, and the decolorization was always near to 0% during decolorizing test for 3 d; in the meantime, a lot of yeast funguses were found in liquid medium when white rot fungus was incubated under non-sterile conditions; however, if white rot fungus was incubated under sterile condition firstly, its decolorization was above 90% under non-sterile condition, which was similar to that of sterile condition. So we point out that the treating process for wastewater with dyes should be divided into two stages. The first stage is that white rot fungus should be incubated under sterile conditions, and the second stage is that reactive brilliant red K-2BP is decolorized under non-sterile conditions. The method not only save the operation cost which decolorizing reactive brilliant red K-2BP under sterile condition, but also provide the feasibility for using white rot fungus to degrade wastewater with dyes under non-sterile conditions.展开更多
The study aims to isolate and optimize bacterial strains having the ability to degrade and decolorize azo dyes produced in the final effluent of textile dying industries. In this regard, ten bacterial strains were iso...The study aims to isolate and optimize bacterial strains having the ability to degrade and decolorize azo dyes produced in the final effluent of textile dying industries. In this regard, ten bacterial strains were isolated from wastewater treatment plants, and most of them were subjected to the colored effluents resulting from dilapidated houses. The ability of these bacterial isolations to use a wide range of azo dyes to determine the sole carbon source was determined. According to these screening testes, two bacterial isolations were selected as the most potent decolorizer for azo dyes, and they were identified as Comamanas acidovorns-TN1 and Burkholdera cepace-TN5. The optimization process started with the addition of 1 g/l yeast extract, where the decolorization ability of the two strains increased sharply and according to this experiment, the two azo dyes, Acid orange 7 and Direct blue 75, were selected to complete the study. The effect of different conditional and chemical factors on the decolorization process of Acid orange 7 and Direct blue 75 by Comamanas acidovorns-TN1 and Burkholdera cepace-TN5 was studied. Factors that contributed to the difference were different pH, temperature, incubation period, inoculum size, carbon source, nitrogen source and the respective concentrations of yeast extract. This study recommends the application of the two most potent bacterial strains in the decolorization of the azo dyes, along with acid orange 7 and direct blue 75, specifically in the industrial effluents under all nutritional and environmental conditions.展开更多
A bacterial strain was isolated from activated sludge and has been identified as Pseudomonas sp. S-42 capable of decolorizing azo dyes such as Diamira Brilliant Orange RR (DBO-RR), Direct Brown M (DBM), Eriochrome Bro...A bacterial strain was isolated from activated sludge and has been identified as Pseudomonas sp. S-42 capable of decolorizing azo dyes such as Diamira Brilliant Orange RR (DBO-RR), Direct Brown M (DBM), Eriochrome Brown R (EBR) and so on. The growing cells, intact cells, cell-free extract and purified enzyme of strain S-42 could decolorize azo dyes under similar conditions at the optimum pH 7.0 and temperature of 37℃. The efficiencies of decolorization for DBO-RR, DBM, EBR with intact cells stood more than 90%. When the cell concentration was 15mg (wet)/ml and the reaction time was 5 hours, the decolorizing activities of intact cells for above three azo dyes were 1.75, 2.4, 0.95 μg dye/mg cell, respectively. Cell-free extract and purified enzyme belonged to azoreductase with molecular weight about 34000±2000 and Vmax and Km values for DBO-RR of 13μmol/mg protein/nun and 54μmol, respectively. The results from the detection of the biodegradation products of DBO-RR by spectrophotometric and NaNO2 reaction methods showed that the biodegradation of azo dyes was initiated by the reducing cleavage of azo bonds. The biodegradation metabolism path for DBO-RR by Psued. S-42 was hypothesized.展开更多
文摘Background:Sapindus mukurossi extract(SME)is a kind of natural surface active ingredient with potential applications in cleansing products.However,the polyphenols and pigments contained in the extract may cause color browning of the products during storage especially at elevated temperatures,affecting its high level addition in the products.Objective:To explore a decolorization process suitable for industrialization realize the high level addition of SME and explore the potential of SME in the field of controlling sebum esters.Materials and Methods:SME was prepared by adsorbing polyphenols on the D301 resin and oxidation decoloring oxidation.Investigated its sebum-control efficacy by SZ95 model and clinical study.Results:The results demonstrate that the D301 resin displays the best adsorption selectivity for polyphenols in SME,and the polyphenol adsorption ratio of D301 resin(5 wt%)can reach 83.6%;The optimal decolorization conditions are pH=7.8,temperature 73℃and decolorization time 5.7 h when H2O2 content is 6%,The prepared SME shows no obvious changes in color and retain stable during the high temperature(50°C)test period of 28 days.4μg/mL of SME decreases the lipid synthesis of SZ95 cells by 24.8%.The clinic efficacy of the shampoo containing 10%SME(by dry extract weigh)is further evaluated.No significant changes in the skin moisture content and transepidermal water loss(TEWL)are observed within four weeks after using the product,while the scalp sebum level is significantly reduced.Conclusion:In this study,we prepared a light-colored,highly stable SME,enabled its high-level addition in cleansing and care products and found its sebum-control efficacy.
基金Supported by National Natural Science Foundation of China(51064011)Jiangxi Education Science " Twelfth Five-year" Planning Program (10YB335)Science Foundation for Youths of Jiangxi Educational Committee (GJJ09599)~~
文摘[Objective] To screen out a microbial flocculant with good decolorization effect on methyl orange wastewater,and study the effect of different cultural conditions on decolorization effect of methyl orange.[Method] Absorbance of methyl orange solution before and after decolorization was determined by spectrophotometer,and the decolorization rate was calculated to compare the effects of different cultural conditions on removal rate of methyl orange.[Result]An optimal actinomycete stain(F-1-2) was screened out,and the best cultural condition was as follows:with sucrose as carbon source and NaNO3 as nitrogen source,cultured in constant temperature oscillator at 150 r/min,30℃ for 72 h.Under the optimal condition,the removal rate against methyl orange could reach 68.4%.[Conclusion]Different culture conditions have great impact on decolorization effect of strain.
文摘A crystalline sapphire (Al2O3) boule (Ф10 × 80mm^3) grown by the temperature gradient technique (TGT) is a bit colored due to carbon volatilization from the graphite heater at high temperatures and the absorption of transitional metal inclusions in the raw material. The sapphire becomes colorless and transparent after decolorization and decarbonization in successive annealings in air and hydrogen at high temperatures. The quality, optical transmissivity,and homogeneity of the sapphire are remarkably improved.
基金Supported by National Science &Technology Pillar Program in the Eleventh Five-year Plan Period ( NO. 2008BADC4B08 )International Science and Technology Cooperation Project of Ministry of Science and Technology of China (NO. 2010DFA62510)Post-graduate Innovation Fund (NO. 54040108003)~~
文摘The strain No. 2 which was isolated from the soil through enrichment culture was used as the experimental material. It was cultured in liquid medium to research decolorizing effect to Rose Bengal and soluble color paste under the different conditions of different media,carbon sources,nitrogen sources,initial pH values and culture temperatures. The results revealed that the optimum decolorizing conditions were using bean juice medium and PDA medium as the minimal medium,sucrose as the carbon source,and ammonium nitrate as the nitrogen source,initial pH 6.0-8.0. In addition,the strain was primarily identified as Aspergillus flavus according to its morphous and ITS sequence analysis.
基金supported by the National Hi-Tech Research and Development Program(863)of China(No.2007AA02Z218)the Open Project Program of Key Lab-oratory of Eco-Textiles,Jiangnan University,Ministry of Education,China(No.KLET0625) the Youth Fundof Jiangnan University(No.2006LQN002).
文摘To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...
基金supported by the Dong-A University Research Fund in 2007
文摘Pseudomonas otitidis WL-13, which has a high capacity to decolorize triphenylmethane dyes, was isolated from activated sludge obtained from a wastewater treatment plant of a dyeing industry. This strain exhibited a remarkable color-removal capability when tested against several triphenylmethane dyes under both shaking and static conditions at high concentrations of dyes. More than 95% of Malachite Green and Brilliant Green was removed within 12 h at 500 μmol/L dye concentration under shaking conditions. Crystal Violet lost about 13% of its color under the same conditions tested. The rate of decolorization increased when the M9 medium was supplemented with yeast extract. The optimum pH and temperature for color removal were 7-9 and 35-40℃, respectively. The observed changes in the visible spectra and the inspection of bacterial growth indicated the color-removal by the adsorption of dye to the cells during incubation with strains.
基金the Hi-Tech Research and Development Program (863) of China (No.2007AA06Z300)
文摘A strain of photosynthetic bacterium, Rhodopseudomonas palustris W1, isolated from a lab-scale anaerobic moving bed biofilm reactor (MBBR) treating textile e?uent was demonstrated to decolorize Reactive Black 5 (RB5) effciently under anaerobic condition. By a series of batch tests, the suitable conditions for RB5 decolorization were obtained, namely, pH < 10, light presence, glutamine or lactate as carbon source with concentration more than 500 mg/L when lactate is selected, NH4Cl as a nitrogen source wi...
基金TheNationalNaturalScienceFoundationofChina (No .2 9976 0 38)
文摘The capability of decolorization for commercial dyes by Coriolus versicolor fermentation broth containing laccase with or without immobilized mycelium was evaluated. With cell free fermentation broth containing laccase, high decolorization ratio was achieved for acid orange 7, but not for the other dyes concerned. The immobilized mycelium was proved to be more efficient than the cell free system. All the four dyestuffs studied were found being decolourized with certain extent by immobilized mycelium. The repeated batch decolorization was carried out with satisfactory results. The experimental data showed that the continuous decolorization of wastewater from a printing and dyeing industry was possible by using the self immobilized C. Versicolor.
基金Supported by the Foundation of Fujian Education Comm ittee(AJ0 0 15 3)
文摘The Electro-chemistry process to produce Fenton reagents has been described. The in situ oxidation of dyes, acid chrome and alizarin red(Fenton reagents) with electrogenerated hydroxyl radicals was investigated. The \{ I-V \} cyclic voltammograms were measured. The redox peaks of the dyes were not observed in the treated dye solutions instead of a couple of O_2/H_2O_2 redox peaks. The IR results indicate that acid chrome dye was decomposed into naphthylamine and phenol aminophenol sulfonic acid. The degradation and the decolorization of the dyes were comfirmed by the visible spectrum and the chemical analysis. The COD_ cr removing rate was close to 80%.
基金This work was supported by the Program for New Century Excellent Talents in University in China(No.NCET-05-0612)the National Natural Science Foundation of China(No.20677014).
文摘The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation by the two yeasts was highly associated with the yeast growth process and glucose presence in the medium. Color removal of 200 mg dye/L was increased from 76.4% to 92.7% within 60 h to 100% within 18-24 h with the increase of glucose from 5 to 10 g/L, although the activity of manganese dependent peroxidase (MnP) decreased by 2-8 times in this case. Hydrogen peroxide of 233.3 μg/L was detected in 6 h in D. polymorphus culture. The cometabolic functions of glucose and hydrogen peroxide could be also confirmed by the further color removals of 95.8% or 78,9% in the second cycle of decolorization tests in which 7 g glucose/L or 250 μg H202/L was superadded respectively together with 200 mg dye/L.
基金Supported by the Foundation for Young Scholars of Educational Commission of Jiangxi Province,China (Foundation)National Natural Science Foundation of China (51064011)
文摘[ Object] The study aimed to discuss the decolorization on indigo dyeing wastewater by laccase from Coriolus versicolor. [ Method ] Firstly, the effects of temperature, pH, indigo concentration, HBT concentration, laccase dosage on the decolorization of indigo dyeing wastewater by laccase/HBT, and then the synergism of laccase and acid cellulase was analyzed. [Result] Using ABTS as the substrate, the kinetic parame- ters, K,, and Vmax, were 0.318 mmol/L and 0.035 5 mmol/( L . min) respectively. The decolorization rate of indigo reached 96.5% when the lacca- se acted on indigo for 40 min with HBT as an introducer at temperature 50 ℃, pH =4.5, indigo concentration 100 mg/L, HBT concentration 0.1% and laccase dosage 100 lU/L. Due to the synergism of laccase and acid cellulase during the bio-finishing of blue jeans, the backstaining degree of blue jeans reduced by 85% when the amount of laccase added was 15 000 IU/kg. Menawhile, the synergism of the laccase and acid cellulase de- creased indigo concentration in wastewater by 83.8%. [ Conclusion ] The laccase from Coriolus versicolor had a good prospect in the bio-finishing of blue jeans and the decolorization of indigo dyeing wastewater.
文摘Azo dyes are among the oldest man made chemicals and they are still widely used in the textile, printing and the food industries. About 10%-15% of the total dyes used in the industry is released into the environment during the manufacturing and usage. Some dyes and some of their N substituted aromatic bio transformation products are toxic and/or carcinogenic and therefore these dyes are considered to be environmental pollutants and health hazards. These azo dyes are degraded by physico chemical and biological methods. Of these, biological methods are considered to be the most economical and efficient. In this work, attempts were made to degrade these dyes aerobically. The organisms which were efficient in degrading the following azo dyes Red RB, Remazol Red, Remazol Blue, Remazol Violet, Remazol Yellow, Golden Yellow, Remazol Orange, Remazol Black were isolated from three different sources viz., wastewater treatment plant, paper mill effluent treatment plant and tannery wastewater treatment plant. The efficiency of azo dye degradation by mixed cultures from each source was analyzed. It was found that mixed cultures from tannery treatment plant worked efficiently in decolorizing Remazol Red, Remazol Orange, Remazol Blue and Remazol Violet, while mixed cultures from the paper mill effluent worked efficiently in decolorizing Red RB, Golden Yellow and Remazol Yellow. The mixed cultures from wastewater treatment plant efficiently decolorized Remazol Black.
文摘In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.
基金Supported by the National Natural Science Foundation of China(No.21376214)
文摘In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Aspergillus niger ZJUBE-1, and an azo dye, Congo red was chosen as a model dye to investigate batch decolorization efficiency by pellets. The pellets as biosorbent showed strong salt and acid tolerance in biosorption process. The results for dye adsorption showed that the biosorption process fitted well with models of pseudo-second-order kinetic and Langmuir isotherm, with a maximum adsorption capacity of 263.2 mg·g^(-1) mycelium. During 6 batches of continuous decolorization operation, the mycelial pellets could possess efficient decolorization abilities(>98.5%).The appearance of new peak in the UV–Vis spectral result indicated that the decolorization process may also contain biodegradation. The mechanism studies showed that efficient biosorption ability of pellets only relies on the active zone on the surface of the pellet, which can be enhanced by nutrition supplement or be shifted outward by a reculture process.
文摘Experimental results of an azo dye(reactive brilliant red X 3B, RBR X 3B) decolorization and degradation in a white rot fungal biofilm reactor were introduced and discussed. The fungal biofilm reactor is highly potential for dye decolorization and degradation with the highest decoloring rate of 95% within 96 hours reaction time at initial pH 4.5 under high nitrogen level (HN) (24 mmol/L ammonium tartrate) condition. Experimental conditions, such as nutrient nitrogen levels in reaction mixture and initial pH, significantly affected dye decolorization and degradation. Effluents from this biofilm reactor can be well treated to meet the discharging requirements by use of chemical flocculation.RBR X 3B was first absorbed onto fungal biomass and then degraded gradually. The SH 13 fungus monopolized the biofilm throughout the experiments, though the reactor was exposed to open air for 4 months.
文摘Because the lack of detailed study of biological decolorization in high salt dye wastewater, it is still difficult to evaluate the biological treatment on high-salinity dye wastewater. The experiments were carried out to study the salt-tolerant bacteria, which is useful in the treatment of high-salinity colored wastewater. Simulated wastewater containing 5-150 g/L salt (NaCI) and 50-2000 mg/L Reactive Brilliant Red K-2BP was treated with three salt-tolerant mixed cultures (CAS, TAS, DSAS), which were under a gradually acclimated procedure. With the increase of concentrations of salt and dye, the decolorization became low. The abilities of decolorization of dyes wastewater by three mixed cultures (CAS, TAS, DSAS) were studied, CAS and DSAS mixed cultures showed more active for the treatment of high-salinity colored wastewater than TAS mixed cultures. The results suggested that there might be a simple process for the high salt wastewater treatment, which could be incorporated into conventional activated sludge plants.
基金The National Natural Science Foundation of China (No. 50478010) and the Chinese Postdoctoral Science Foundation (No.20040350022)
文摘Almost all the studies both domestic and international using white rot fungus for dye wastewater treatment are performed under sterile conditions. However, it is obviously unpractical that wastewater with dyes is treated under sterile conditions. A feasible study was made for using white rot fungus Phanerochaete chrysosporium to degrade reactive brilliant red K-2BP dye under non-sterile conditions. The results showed that there was no decolorizing effect under non-sterile condition if white rot fungus was incubated under non-sterile condition, and the decolorization was always near to 0% during decolorizing test for 3 d; in the meantime, a lot of yeast funguses were found in liquid medium when white rot fungus was incubated under non-sterile conditions; however, if white rot fungus was incubated under sterile condition firstly, its decolorization was above 90% under non-sterile condition, which was similar to that of sterile condition. So we point out that the treating process for wastewater with dyes should be divided into two stages. The first stage is that white rot fungus should be incubated under sterile conditions, and the second stage is that reactive brilliant red K-2BP is decolorized under non-sterile conditions. The method not only save the operation cost which decolorizing reactive brilliant red K-2BP under sterile condition, but also provide the feasibility for using white rot fungus to degrade wastewater with dyes under non-sterile conditions.
文摘The study aims to isolate and optimize bacterial strains having the ability to degrade and decolorize azo dyes produced in the final effluent of textile dying industries. In this regard, ten bacterial strains were isolated from wastewater treatment plants, and most of them were subjected to the colored effluents resulting from dilapidated houses. The ability of these bacterial isolations to use a wide range of azo dyes to determine the sole carbon source was determined. According to these screening testes, two bacterial isolations were selected as the most potent decolorizer for azo dyes, and they were identified as Comamanas acidovorns-TN1 and Burkholdera cepace-TN5. The optimization process started with the addition of 1 g/l yeast extract, where the decolorization ability of the two strains increased sharply and according to this experiment, the two azo dyes, Acid orange 7 and Direct blue 75, were selected to complete the study. The effect of different conditional and chemical factors on the decolorization process of Acid orange 7 and Direct blue 75 by Comamanas acidovorns-TN1 and Burkholdera cepace-TN5 was studied. Factors that contributed to the difference were different pH, temperature, incubation period, inoculum size, carbon source, nitrogen source and the respective concentrations of yeast extract. This study recommends the application of the two most potent bacterial strains in the decolorization of the azo dyes, along with acid orange 7 and direct blue 75, specifically in the industrial effluents under all nutritional and environmental conditions.
文摘A bacterial strain was isolated from activated sludge and has been identified as Pseudomonas sp. S-42 capable of decolorizing azo dyes such as Diamira Brilliant Orange RR (DBO-RR), Direct Brown M (DBM), Eriochrome Brown R (EBR) and so on. The growing cells, intact cells, cell-free extract and purified enzyme of strain S-42 could decolorize azo dyes under similar conditions at the optimum pH 7.0 and temperature of 37℃. The efficiencies of decolorization for DBO-RR, DBM, EBR with intact cells stood more than 90%. When the cell concentration was 15mg (wet)/ml and the reaction time was 5 hours, the decolorizing activities of intact cells for above three azo dyes were 1.75, 2.4, 0.95 μg dye/mg cell, respectively. Cell-free extract and purified enzyme belonged to azoreductase with molecular weight about 34000±2000 and Vmax and Km values for DBO-RR of 13μmol/mg protein/nun and 54μmol, respectively. The results from the detection of the biodegradation products of DBO-RR by spectrophotometric and NaNO2 reaction methods showed that the biodegradation of azo dyes was initiated by the reducing cleavage of azo bonds. The biodegradation metabolism path for DBO-RR by Psued. S-42 was hypothesized.