The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe...The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.展开更多
The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework i...The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework is the automatic way of getting arbitrarily high order methods,which can be put in the Runge-Kutta(RK)form.The drawback is the larger computational cost with respect to the most used RK methods.To reduce such cost,in an explicit setting,we propose an efcient modifcation:we introduce interpolation processes between the DeC iterations,decreasing the computational cost associated to the low order ones.We provide the Butcher tableaux of the new modifed methods and we study their stability,showing that in some cases the computational advantage does not afect the stability.The fexibility of the novel modifcation allows nontrivial applications to PDEs and construction of adaptive methods.The good performances of the introduced methods are broadly tested on several benchmarks both in ODE and PDE contexts.展开更多
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51874311,52174096)。
文摘The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.
文摘The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework is the automatic way of getting arbitrarily high order methods,which can be put in the Runge-Kutta(RK)form.The drawback is the larger computational cost with respect to the most used RK methods.To reduce such cost,in an explicit setting,we propose an efcient modifcation:we introduce interpolation processes between the DeC iterations,decreasing the computational cost associated to the low order ones.We provide the Butcher tableaux of the new modifed methods and we study their stability,showing that in some cases the computational advantage does not afect the stability.The fexibility of the novel modifcation allows nontrivial applications to PDEs and construction of adaptive methods.The good performances of the introduced methods are broadly tested on several benchmarks both in ODE and PDE contexts.
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.