To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduce...To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduced into SAR tomography. With the estimated AR parameters of ARMA model of noise through Yule-Walker equation, the signal series of height is pre-filtered. Then, through ESPRIT, the spectrum is obtained and the aperture in height direction is synthesized. Finally, the SAR tomography imaging of scene is achieved. The results of processing on signal with non-Gaussian noise demonstrate the robustness of the proposed method. The tomography imaging of the scenes shows that the higher-order spectrum analysis is feasible in the application.展开更多
OBJECTIVE To explore a novel pH-sensitive fluorescent probe for in vivo tumor imaging.METHODS Zn5 were obtained in 140℃ after mixed with Me OH,water,Zn(NO_3)2·6 H_2O,H4L and trimethylamine.The fluorescence spect...OBJECTIVE To explore a novel pH-sensitive fluorescent probe for in vivo tumor imaging.METHODS Zn5 were obtained in 140℃ after mixed with Me OH,water,Zn(NO_3)2·6 H_2O,H4L and trimethylamine.The fluorescence spectra of Zn5 with the same concentration in different pH aqueous solutions were detected.And the stability of Zn5 was investigated by time dependent fluorescence emission spectra of Zn5 in BSA aqueous solution and 5.0% serum solution.Then,the cytotoxicity of Zn5 was detected by MTT assays.To clarify whether a similar fluorescence response occurs in biological organisms,He La cells were pretreated with probe Zn5(0.5 μmol·L^(-1)) and fluorescence imaging were collected for targeting lysosomes in living cells because of lysosomes′ acidic microenvironment.The A375 tumor-bearing mice were used to assess the imaging ability of Zn5 in vivo.Mouse tumor xenografts were established by injection of A375 cells with 2×10~6 cells per flank.Probe(1 μg·g^(-1)) was administered to mice by injection.Images were obtained using IVIS Spectrum CT Imaging System.RESULTS There is a 11-fold intensity increasing as the pH values changing from 8 to 2.The almost unchanged emission intensities suggest Zn5 is stable in both BSA and serum.Zn5 has negligible cytotoxicity for He La,293 T and CHO-K1 cells.Zn5 can selectively display lysosomes in living cells.Both the 2D and 3D images in vivo distinguish the tumor from other tissues with good fluorescence contrast.CONCLUSION The high chemical stability,emission in the Vis/NIR range,pH sensitivity,a pKa located in the tumor pH range,and low toxicity make Zn5 is suitable for application as a pH-sensitive fluorescent probe for bio-imaging.展开更多
Nowadays,water pollution has become more serious,greatly affecting human life and healthy.Electrochemical biosensor,a novel and rapid detection technique,plays an important role in the realtime and trace detection of ...Nowadays,water pollution has become more serious,greatly affecting human life and healthy.Electrochemical biosensor,a novel and rapid detection technique,plays an important role in the realtime and trace detection of water pollutants.However,the stability and sensitivity of electrochemical biosensors remain a great challenge for practical detections in real samples to the strong interferences derived from complex components and coagulation effects.In this work,we reported a novel threedimensional architecture of Prussian blue nanoparticles(PBNPs)/Pt nanoparticles(PtNPs)composite film,using 3 D interweaved carbon nanofibers as a supporting matrix,for the construction of screenprinted microchips-based biosensor.PtNPs with diameters of-2.5 nm was highly dispersed on the carbon nanofibers(CNFs)to build a 3 D skeleton nanostructure through a solvothermal reduction.Subsequently,uniform PBNPs were in-situ self-assembled on this skeleton to construct a 3 D architecture of PB/Pt-CNF composite film.Due to the synergistic effects derived from this special feature,the as-prepared hydroquinone(HQ)biosensor chips can synchronously promote both surface area and conductivity to greatly enhance the electrocatalysis from enzymatic reaction.This biosensor has exhibited a high sensitivity of 220.28μA·L·mmol^(-1)·cm^(-2) with an ultrawide linear range from 2.5μmol·L^(-1) to 1.45 mmol·L^(-1) at a low potential of 0.15 V,as well as the satisfactory reproducibility and usage stability.Besides,its accuracy was also verified in the assays of real water samples.It is highly expected that the 3 D PB/Pt-CNF based screen-printed microchips will have wide applications in dynamic monitoring and early warning of analytes in the various practical fields.展开更多
The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly aff...The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly affects the precision and integrity of weak pressure signals.Here,a pressure sensor with high sensitivity and a wide measurement range composed of porous fiber paper and 3D patterned electrodes is proposed.Multi-walled carbon nanotubes with excellent conductivity were evenly sprayed on the fiber paper to form the natural spatial conducting networks,while the copper-deposited polydimethylsiloxane films with micropyramids array were used as electrodes and flexible substrates.Increased conducting paths between electrodes and fibers can be obtained when high-density micro-pyramids fall into the porous structures of the fiber paper under external pressure,thereby promoting the pressure sensor to show an ultra-high sensitivity of 17.65 kPa^(-1)in the pressure range of 0–2 kPa,16 times that of the device without patterned electrodes.Besides,the sensor retains a high sensitivity of 2.06 kPa^(-1)in an ultra-wide measurement range of 150 kPa.Moreover,the sensor can detect various physiological signals,including pulse and voice,while attached to the human skin.This work provides a novel strategy to significantly improve the sensitivity and measurement range of flexible pressure sensors,as well as demonstrates attractive applications in physiological signal monitoring.展开更多
目的分析双源CT双能量成像(dual energy perfusion imaging,DEPI)联合高敏C反应蛋白(high-sensitivity C reactive protein,hs-CRP)、D-二聚体(D-dimer,D-D)检测对周围型肺动脉栓塞的诊断价值。方法选取海南医学院第二附属医院2015年3月...目的分析双源CT双能量成像(dual energy perfusion imaging,DEPI)联合高敏C反应蛋白(high-sensitivity C reactive protein,hs-CRP)、D-二聚体(D-dimer,D-D)检测对周围型肺动脉栓塞的诊断价值。方法选取海南医学院第二附属医院2015年3月至2018年6月收治的171例临床疑似周围型肺动脉栓塞患者为研究对象,分别行CT肺动脉造影(CT pulmonary angiography,CTPA)、DEPI检查,检测患者血清hs-CRP、D-D水平,以CTPA结合病理检查结果作为周围型肺动脉栓塞诊断的金标准,计算DEPI及其联合hs-CRP、D-D水平检测对周围型肺动脉栓塞的诊断价值。结果171例患者中,共有87例诊断为周围型肺动脉栓塞,单纯CTPA检出率为56.32%(49/87)。87例周围型肺动脉栓塞患者共检出栓子159个,CTPA对亚段以下动脉栓子检出率显著低于CTPA+肺灌注血容量(lung perfusion blood volume,Lung PBV)和CTPA+肺血管(Lung Vessels)(均P<0.05)。周围型肺动脉栓塞患者血清hs-CRP、D-D水平均显著高于非周围型肺动脉栓塞患者(均P<0.05)。hs-CRP+D-D诊断周围型肺动脉栓塞的灵敏度较高,但特异度偏低;DEPI联合hs-CRP、D-D水平检测周围型肺动脉栓塞的灵敏度、特异度分别为92.13%、79.62%。结论DEPI联合hs-CRP、D-D水平检测对周围型肺动脉栓塞的诊断效能值得肯定,对亚段以下动脉栓子的检出率优于CTPA。展开更多
Three-dimensional(3D)porous piezoresistive sensors are widely used because of their simple fabrication and convenient signal acquisition.However,because of the dependence on organic skeleton materials and the complexi...Three-dimensional(3D)porous piezoresistive sensors are widely used because of their simple fabrication and convenient signal acquisition.However,because of the dependence on organic skeleton materials and the complexity of conductive coating preparation,the electrical and mechanical properties of 3D wearable piezoresistive sensors have gradually failed to accommodate many emerging fields.Here,a new flexible 3D piezoresistive sensor(NF3PS)with high sensitivity and a wide measurement range is proposed,which comprises a natural porous loofah as a flexible framework and carbon fiber/carbon nanotube(CF/CNT)multiscale composite as a conductive coating.Composed of cellulose and lignin,the irregular,porous loofah has excellent mechanical strength,elasticity,and toughness,ensuring a repeated compression/recovery behavior of the NF3PS.In addition,compared with the single-size carbon coating,the coupling of multiscale CF/CNT composite coating improves sensitivities over a range of pressures.The NF3PS demonstrates a sensitivity of 6.94 kPa^(-1) with good linearity in the pressure range of 0–11.2 kPa and maintains a sensitivity of 0.28 kPa^(-1) in an ultrawide measurement range of 11.2–84.6 kPa.Considering flexibility,robustness,and wide-ranging linear resistance variation,the feasibility of the NF3PS in human activity monitoring,mechanical control,and smart homes is verified.This work provides a novel strategy for a new generation of 3D flexible pressure sensors for improving sensitivity and measurement range and demonstrates attractive applications in wearable sensors.展开更多
基金supported partly by the New Century Excellent Talents in University(23901019)the Sichuan Provincial Youth Science and Technology Foundation(06ZQ026-006).
文摘To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduced into SAR tomography. With the estimated AR parameters of ARMA model of noise through Yule-Walker equation, the signal series of height is pre-filtered. Then, through ESPRIT, the spectrum is obtained and the aperture in height direction is synthesized. Finally, the SAR tomography imaging of scene is achieved. The results of processing on signal with non-Gaussian noise demonstrate the robustness of the proposed method. The tomography imaging of the scenes shows that the higher-order spectrum analysis is feasible in the application.
基金supported by Distinguished Young Scholars(21525101)the NSFC(91422302,and 21371037)
文摘OBJECTIVE To explore a novel pH-sensitive fluorescent probe for in vivo tumor imaging.METHODS Zn5 were obtained in 140℃ after mixed with Me OH,water,Zn(NO_3)2·6 H_2O,H4L and trimethylamine.The fluorescence spectra of Zn5 with the same concentration in different pH aqueous solutions were detected.And the stability of Zn5 was investigated by time dependent fluorescence emission spectra of Zn5 in BSA aqueous solution and 5.0% serum solution.Then,the cytotoxicity of Zn5 was detected by MTT assays.To clarify whether a similar fluorescence response occurs in biological organisms,He La cells were pretreated with probe Zn5(0.5 μmol·L^(-1)) and fluorescence imaging were collected for targeting lysosomes in living cells because of lysosomes′ acidic microenvironment.The A375 tumor-bearing mice were used to assess the imaging ability of Zn5 in vivo.Mouse tumor xenografts were established by injection of A375 cells with 2×10~6 cells per flank.Probe(1 μg·g^(-1)) was administered to mice by injection.Images were obtained using IVIS Spectrum CT Imaging System.RESULTS There is a 11-fold intensity increasing as the pH values changing from 8 to 2.The almost unchanged emission intensities suggest Zn5 is stable in both BSA and serum.Zn5 has negligible cytotoxicity for He La,293 T and CHO-K1 cells.Zn5 can selectively display lysosomes in living cells.Both the 2D and 3D images in vivo distinguish the tumor from other tissues with good fluorescence contrast.CONCLUSION The high chemical stability,emission in the Vis/NIR range,pH sensitivity,a pKa located in the tumor pH range,and low toxicity make Zn5 is suitable for application as a pH-sensitive fluorescent probe for bio-imaging.
基金financially supported by the National Natural Science Foundation of China(22078148 and 21727818)the Innovative Research Team Program by the Ministry of Education of China(IRT_17R54)+3 种基金the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Key Project by Medical Science and Technology Development Foundation of Nanjing Department of Health(ZKX17014)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_1021)。
文摘Nowadays,water pollution has become more serious,greatly affecting human life and healthy.Electrochemical biosensor,a novel and rapid detection technique,plays an important role in the realtime and trace detection of water pollutants.However,the stability and sensitivity of electrochemical biosensors remain a great challenge for practical detections in real samples to the strong interferences derived from complex components and coagulation effects.In this work,we reported a novel threedimensional architecture of Prussian blue nanoparticles(PBNPs)/Pt nanoparticles(PtNPs)composite film,using 3 D interweaved carbon nanofibers as a supporting matrix,for the construction of screenprinted microchips-based biosensor.PtNPs with diameters of-2.5 nm was highly dispersed on the carbon nanofibers(CNFs)to build a 3 D skeleton nanostructure through a solvothermal reduction.Subsequently,uniform PBNPs were in-situ self-assembled on this skeleton to construct a 3 D architecture of PB/Pt-CNF composite film.Due to the synergistic effects derived from this special feature,the as-prepared hydroquinone(HQ)biosensor chips can synchronously promote both surface area and conductivity to greatly enhance the electrocatalysis from enzymatic reaction.This biosensor has exhibited a high sensitivity of 220.28μA·L·mmol^(-1)·cm^(-2) with an ultrawide linear range from 2.5μmol·L^(-1) to 1.45 mmol·L^(-1) at a low potential of 0.15 V,as well as the satisfactory reproducibility and usage stability.Besides,its accuracy was also verified in the assays of real water samples.It is highly expected that the 3 D PB/Pt-CNF based screen-printed microchips will have wide applications in dynamic monitoring and early warning of analytes in the various practical fields.
基金supported by the National Key R&D Program of China(Grant Nos.2019YFE0120300,2019YFF0301802)National Natural Science Foundation of China(Grant Nos.52175554,62101513,51975542)+3 种基金Natural Science Foundation of Shanxi Province(Grant No.201801D121152)Shanxi“1331 Project”Key Subject Construction(Grant No.1331KSC)National Defense Fundamental Research ProjectResearch Project Supported by Shan Xi Scholarship Council of China(Grant No.2020-109)。
文摘The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly affects the precision and integrity of weak pressure signals.Here,a pressure sensor with high sensitivity and a wide measurement range composed of porous fiber paper and 3D patterned electrodes is proposed.Multi-walled carbon nanotubes with excellent conductivity were evenly sprayed on the fiber paper to form the natural spatial conducting networks,while the copper-deposited polydimethylsiloxane films with micropyramids array were used as electrodes and flexible substrates.Increased conducting paths between electrodes and fibers can be obtained when high-density micro-pyramids fall into the porous structures of the fiber paper under external pressure,thereby promoting the pressure sensor to show an ultra-high sensitivity of 17.65 kPa^(-1)in the pressure range of 0–2 kPa,16 times that of the device without patterned electrodes.Besides,the sensor retains a high sensitivity of 2.06 kPa^(-1)in an ultra-wide measurement range of 150 kPa.Moreover,the sensor can detect various physiological signals,including pulse and voice,while attached to the human skin.This work provides a novel strategy to significantly improve the sensitivity and measurement range of flexible pressure sensors,as well as demonstrates attractive applications in physiological signal monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.52175554)the Natural Science Foundation of Hebei Province(Grant No.F2021409007)+2 种基金the Hebei Province Foundation for the Returned Overseas Chinese Scholars(Grant No.C20220103)the School Research Fund Project(Grant Nos.ZDYY-2021-01,YKY-2022-33)。
文摘Three-dimensional(3D)porous piezoresistive sensors are widely used because of their simple fabrication and convenient signal acquisition.However,because of the dependence on organic skeleton materials and the complexity of conductive coating preparation,the electrical and mechanical properties of 3D wearable piezoresistive sensors have gradually failed to accommodate many emerging fields.Here,a new flexible 3D piezoresistive sensor(NF3PS)with high sensitivity and a wide measurement range is proposed,which comprises a natural porous loofah as a flexible framework and carbon fiber/carbon nanotube(CF/CNT)multiscale composite as a conductive coating.Composed of cellulose and lignin,the irregular,porous loofah has excellent mechanical strength,elasticity,and toughness,ensuring a repeated compression/recovery behavior of the NF3PS.In addition,compared with the single-size carbon coating,the coupling of multiscale CF/CNT composite coating improves sensitivities over a range of pressures.The NF3PS demonstrates a sensitivity of 6.94 kPa^(-1) with good linearity in the pressure range of 0–11.2 kPa and maintains a sensitivity of 0.28 kPa^(-1) in an ultrawide measurement range of 11.2–84.6 kPa.Considering flexibility,robustness,and wide-ranging linear resistance variation,the feasibility of the NF3PS in human activity monitoring,mechanical control,and smart homes is verified.This work provides a novel strategy for a new generation of 3D flexible pressure sensors for improving sensitivity and measurement range and demonstrates attractive applications in wearable sensors.